Research paper

Novel nonsecosteroidal VDR ligands with phenyl-pyrrolyl pentane skeleton for cancer therapy

Zhixin Ge, Meixi Hao, Meng Xu, Zhigui Su, Zisheng Kang, Lingjing Xue*, Can Zhang*
State Key Laboratory of Nature Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, Center of Drug Discovery, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, 210009, China

A R T I C L E I N F O

Article history:

Received 16 March 2015
Received in revised form
21 October 2015
Accepted 25 October 2015
Available online 3 November 2015

Keywords:

VDR
Nonsecosteroid
Phenyl-pyrrolyl pentane skeleton
Cancer therapy
Hypercalcemia
Anti-proliferation
Vitamin D_{3}-agonistic activity

Abstract

A series of nonsecosteroidal vitamin D_{3} receptor (VDR) ligands with phenyl-pyrrolyl pentane skeleton were synthesized for cancer therapy. In contrast to $1 \alpha, 25$-dihydroxyvitamin D_{3} (Calcitriol), these VDR ligands exhibited anti-proliferative activity without inducing hypercalcemia. These compounds were evaluated for vitamin D_{3}-agonistic ability and anti-proliferative activity in vitro. Among them, compounds $\mathbf{5 k}$ and $\mathbf{5 i}$ exhibited equivalent vitamin D_{3}-agonistic activity compared with Calcitriol. Meanwhile, compound 5k displayed promising inhibiting profile against MCF-7, HepG-2 and Caco-2 with IC 50 values of $0.00586 \mu \mathrm{M}, 0.176 \mu \mathrm{M}$, and $1.01 \mu \mathrm{M}$ (Calcitriol: $5.58 \mu \mathrm{M}, 80.83 \mu \mathrm{M}$ and $4.46 \mu \mathrm{M}$) respectively. Compound $5 \mathbf{i}$ inhibited proliferation of PC-3 with IC_{50} value of $0.00798 \mu \mathrm{M}$ (Calcitriol: $17.25 \mu \mathrm{M}$). Additionally, neither of these compounds significantly elevated serum calcium in rats.

© 2015 Elsevier Masson SAS. All rights reserved.

1. Introduction

$1 \alpha, 25$-dihydroxyvitamin $D_{3}\left(1 \alpha, 25(\mathrm{OH})_{2} \mathrm{D}_{3}\right.$, Fig. 1), one of biologically active forms of vitamin D_{3}, regulates calcium and phosphate metabolism and is essential for bone [1,2]. The biological effects of $1 \alpha, 25(\mathrm{OH})_{2} \mathrm{D}_{3}$ are mediated by the vitamin D_{3} receptor (VDR) which belongs to the nuclear receptor superfamily. When $1 \alpha, 25(\mathrm{OH})_{2} \mathrm{D}_{3}$ binds to VDR, they form a heterodimer with the retinoid X receptor (RXR). Then, the ligand-bound VDR-RXR complex associates with vitamin D_{3} responsive element (VDRE) in the promoters of the target gene, resulting in the transcriptional regulation of gene expression [3-5]. $1 \alpha, 25(\mathrm{OH})_{2} \mathrm{D}_{3}$ have been proved to play an important role in many signal pathways including differentiation, anti-proliferation and apoptosis [6-8]. Therefore, it has the potential to affect cancer development and growth.

However, the high potency of $1 \alpha, 25(\mathrm{OH})_{2} \mathrm{D}_{3}$ to increase serum calcium precludes its wide use in most cases. In order to obtain potent VDR agonists retaining greater selectivity with less toxic

[^0](hypercalcemic) side effects, more than 3000 secosteroid analogs have been synthesized by chemical structure modification [9,10]. Although some of them have been successfully used in treatments of psoriasis and osteoporosis, the potential risk of adverse effect limits their application for long-term therapy such as cancer and autoimmune diseases. Therefore, there is an urgent clinical need for novel VDR agonists without risks of increasing serum calcium. In 1999, a series of bis-phenyl nonsecosteroidal derivatives including LG190155 (Fig. 1) were reported. They mimic various activities of $1 \alpha, 25(\mathrm{OH})_{2} \mathrm{D}_{3}$ but exhibited no calcemic potential in vivo [11]. In 2013, tris-aromatic derivatives have been shown as potent VDR agonists. So far, a lot of nonsecosteroidal derivatives have been synthesized and investigated to study their structure-activity relationship [12,13].

Recently, demonstrations of signaling pathway of $1 \alpha, 25(\mathrm{OH})_{2} \mathrm{D}_{3}$ in cancer make nonsecosteroidal VDR derivatives suitable for anticancer therapeutics [14-16]. Here we have designed and synthesized phenyl-pyrrolyl pentane skeleton nonsecosteroidal VDR derivatives. Among them, the compound sw-22 (Fig. 1) inhibited the proliferation of MCF-7 with the IC_{50} value of $0.32 \mu \mathrm{M}$ [17]. In order to improve the anti-proliferative activity, the pyrrolyl side chains were further modified (Fig. 1). First, hydrophilic moieties were introduced to skeleton structure, which could form hydrogen binding interaction with amino acid residues of VDR

Fig. 1. The designed VDR ligands.
through miming the roles of the 1α-hydroxyl and 25 - hydroxyl groups of $1 \alpha, 25(\mathrm{OH})_{2} \mathrm{D}_{3}$. Secondly, a short chain was added to amide bond in order to associate with water channel, which is supported by the structure activity relationship of Eldecalcitol (Fig. 1). At last, a series of tris-aromatic analogues were synthesized through introducing aromatic ring according the design of compound CD4849 which has been proved to maintain similar hydrogen binding network and hydrophobic interactions as the natural ligand [18]. The vitamin D_{3}-agonistic activity of compounds was estimated by HL-60 cell differentiation. The results showed that compounds $\mathbf{5 i}, \mathbf{5 k}, \mathbf{6 a}$ and $7 \mathbf{a}$ demonstrated excellent VDR agonistic ability. Especially, compound 7a showed better agonistic activity compared with Calcitriol. Compound $\mathbf{5 k}$ exhibited promising anti-proliferative activity on MCF-7, Caco-2 and HepG-2 cells and compound $\mathbf{5 i}$ was the most potent compound for the inhibition of PC-3 cell. Meanwhile, $\mathbf{5 i}$ and $\mathbf{5 k}$ showed no potential on rising serum calcium. Furthermore, we have also performed docking study to understand the structure-activity relationship.

2. Results and discussion

2.1. Chemistry

The synthesis of VDR ligands was depicted in Scheme 1. The key compound 3 was prepared by previously reported approach by our group [17]. Compounds $\mathbf{4 a}-\mathbf{4 r}, \mathbf{8 a}-\mathbf{8 e}$ and $\mathbf{1 0 a}-\mathbf{1 0 b}$ were prepared in a single step by the treatment of compound $\mathbf{3}$ with different amines or esters. All of them were reduced to obtain compounds $\mathbf{5 a}-\mathbf{5 r}, \mathbf{9 a}-\mathbf{9 e}$ and 11a-11b by sodium borohydride in methanol. Hydrolyzed by lithium hydroxide, compounds $\mathbf{6 a}$ and $\mathbf{6 b}$ were synthesized, where the R_{2} is carboxylic acid ester and X is a nitrogen atom. Compounds $7 \mathbf{7 a}$ and $\mathbf{7 b}$ were obtained through reduction reaction in the same way.

2.2. Biological activities

2.2.1. In vitro VDR-binding ability assay

To determine if the phenyl-pyrrolyl pentane derivatives bound directly to VDR in vitro, the competitive binding experiment was performed using PolarScreen VDR Competitor Assay Red. Many of the selected compounds demonstrated nice VDR binding ability compared with Calcitriol, as shown in Fig. 2. Compounds 5f, 5i, 5k, and 7a displayed better VDR binding ability than $\mathbf{4 f}, \mathbf{4 i}, \mathbf{4 k}$, and $\mathbf{6 a}$, which indicated that hydroxyl group could raise binding ability obviously. Compound $\mathbf{5 e}, \mathbf{5 i}$, 5k, also showed significantly VDR binding ability because of the introduction of amino or substituted amino groups. This observation could prove the novel compounds we designed belong to VDR ligands.

2.2.2. Vitamin D_{3}-agonistic activity (estimated by HL-60 cell differentiation induction)

It is proved that vitamin D_{3}-agonistic activity is associated with HL-60 cell differentiation induction [19,20]. Therefore, the vitamin D_{3}-agonistic ability can be estimated as the potential to differentiate human promyelocytic leukemia cell line (HL-60) into macrophages. All synthesized compounds were tested for HL-60 cell differentiation using Calcitriol as the positive control, as shown in Table 1. Compounds $\mathbf{5 a}-\mathbf{5 r}$ demonstrated better vitamin $\mathrm{D}_{3^{-}}$ agonistic activity than compounds $\mathbf{4 a}-\mathbf{4 r}$, which indicated that it is necessary to introduce hydroxyl group into the chain beside phenyl ring. Compounds 5a, 5d, 5i, 5k 6a, and 7a displayed excellent vitamin D_{3}-agonistic ability because of the hydrophilic moieties being introduced into pyrrolyl side chain, especially, compound 7a showed better vitamin D_{3}-agonistic activity compared with Calcitriol. The compounds with tris-aromatic exhibited poor vitamin $\mathrm{D}_{3}-$ agonistic activity compared to other VDR agonists. When a hydrophilic chain was added to amide bond compounds $\mathbf{4 0}$ and $\mathbf{5 0}$

$\mathrm{X}=\mathrm{O}, \mathrm{N}$ when $\mathrm{X}=\mathrm{O}, \mathrm{R}_{1}$ non-existent

Scheme 1. Reagents and reaction conditions: (a) Amino acid methyl ester hydrochloride, $\mathrm{EDCI}, \mathrm{HOBT}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{DMF}, 25^{\circ} \mathrm{C}$, overnight/p-nitrobenzenesulfonyl chloride, $\mathrm{DMAP}, \mathrm{CH}_{3} \mathrm{CN}$, $70^{\circ} \mathrm{C}$, overnight/EDCI, DMAP, $\mathrm{CH}_{3} \mathrm{Cl}, 70^{\circ} \mathrm{C}$, overnight; (b) $\mathrm{NaBH}_{4}, \mathrm{CH}_{3} \mathrm{OH}, 0{ }^{\circ} \mathrm{C}-25^{\circ} \mathrm{C}, 2 \mathrm{~h}-6 \mathrm{~h}$; (c) LiOH $\cdot \mathrm{H}_{2} \mathrm{O}, \mathrm{THF}, \mathrm{H}_{2} \mathrm{O}, 25^{\circ} \mathrm{C}$, overnight.

Fig. 2. Competitive binding assay of selected phenyl-pyrrolyl pentane derivatives.
showed moderate vitamin D_{3}-agonistic activity.

2.2.3. In vitro anti-proliferation activity assay

In vitro anti-proliferation activity of phenyl-pyrrolyl pentane derivatives was evaluated against cancer cells MCF-7, Caco-2, HepG-2, PC-3 and normal cell L02 (human normal liver cell line) by MTT assay, using Calcitriol as the positive control. As shown in Table 2, most of designed compounds showed better inhibition
activity against PC-3 cell compared with other cancer cells. Especially, compound $5 \mathbf{5 i}$ displayed the best anti-proliferative activity with IC_{50} value of $0.00797 \mu \mathrm{M}$ against PC-3 cell, and compound $\mathbf{5 k}$ exhibited significantly inhibition activity with the values of $0.00587,1.01$ and $0.176 \mu \mathrm{M}$ against MCF-7, Caco-2 and HepG-2 cells, respectively. Both compounds $\mathbf{5 i}$ and $\mathbf{5 k}$ demonstrated better promising anti-proliferative activity compared with positive compound Calcitriol. The result of L02 cell showed VDR ligands had

Table 1
The structures and vitamin D_{3}-agonistic activity of phenyl-pyrrolyl pentane derivatives.

Compd	R_{1}	R_{2}	HL-60 cell differentiation inducing activity ${ }^{\text {a }}$ $\mathrm{EC}_{50}{ }^{\mathrm{b}}(\mu \mathrm{M})$
4a	$-\mathrm{COC}\left(\mathrm{CH}_{3}\right)_{3}$	(L)- $\mathrm{NHCH}\left[\mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{C}_{2} \mathrm{H}_{5}\right] \mathrm{COOCH}_{3}$	0.59 ± 0.17
4b	$-\mathrm{COC}\left(\mathrm{CH}_{3}\right)_{3}$	$-\mathrm{N}\left(\mathrm{CH}_{3}\right) \mathrm{CH}_{2} \mathrm{COOC}_{2} \mathrm{H}_{5}$	>50
4c	$-\mathrm{COC}\left(\mathrm{CH}_{3}\right)_{3}$	$-\mathrm{NHCH}_{2} \mathrm{CH}_{2} \mathrm{~N}\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)_{2}$	0.091 ± 0.022
4d	$-\mathrm{COC}\left(\mathrm{CH}_{3}\right)_{3}$	$-\mathrm{NHCH}_{2} \mathrm{CH}_{2} \mathrm{~N}\left(\mathrm{CH}_{3}\right)_{2}$	0.077 ± 0.015
4e	$-\mathrm{COC}\left(\mathrm{CH}_{3}\right)_{3}$	$-\mathrm{NHCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}\left(\mathrm{CH}_{3}\right)_{2}$	0.096 ± 0.031
4f	$-\mathrm{COC}\left(\mathrm{CH}_{3}\right)_{3}$	$-\mathrm{NHCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)_{2}$	0.022 ± 0.008
4g	$-\mathrm{COC}\left(\mathrm{CH}_{3}\right)_{3}$	$-\mathrm{NHCH}_{2} \mathrm{C} \equiv \mathrm{CH}$	2.2 ± 0.5
4h	$-\mathrm{COC}\left(\mathrm{CH}_{3}\right)_{3}$	$-\mathrm{NHCH}_{2} \mathrm{CH}\left(\mathrm{OCH}_{3}\right)_{2}$	0.13 ± 0.04
4i	$-\mathrm{COC}\left(\mathrm{CH}_{3}\right)_{3}$	$-\mathrm{NHCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2} \mathrm{O}$	0.24 ± 0.07
4j	$-\mathrm{COC}\left(\mathrm{CH}_{3}\right)_{3}$	$-\mathrm{NHCH}_{2} \mathrm{CH}_{2} \mathrm{Br}$	1.9 ± 0.7
4k	$-\mathrm{COC}\left(\mathrm{CH}_{3}\right)_{3}$	$-\mathrm{NHCH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}$	0.12 ± 0.02
41	$-\mathrm{COC}\left(\mathrm{CH}_{3}\right)_{3}$	$-\mathrm{N}\left(\mathrm{CH}_{3}\right) \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CN}$	9.8 ± 2.8
4m	$-\mathrm{COC}\left(\mathrm{CH}_{3}\right)_{3}$	$-\mathrm{N}\left(\mathrm{CH}_{3}\right) \mathrm{CH}_{2} \mathrm{C}=\mathrm{CH}_{2}$	21.6 ± 2.1
4n	$-\mathrm{COC}\left(\mathrm{CH}_{3}\right)_{3}$	$-\mathrm{N}\left(\mathrm{CH}_{3}\right) \mathrm{C}_{6} \mathrm{H}_{5}$	18.5 ± 1.8
40	$-\mathrm{COC}\left(\mathrm{CH}_{3}\right)_{3}$	$-\mathrm{N}\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CN}\right) \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CN}$	0.87 ± 0.18
4p	$-\mathrm{COC}\left(\mathrm{CH}_{3}\right)_{3}$	$-\mathrm{OCH}\left(\mathrm{CH}_{3}\right) \mathrm{C} \equiv \mathrm{CH}$	0.21 ± 0.03
4q	$-\mathrm{COC}\left(\mathrm{CH}_{3}\right)_{3}$	$-\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{C} \equiv \mathrm{CH}$	28.8 ± 1.7
4r	$-\mathrm{COC}\left(\mathrm{CH}_{3}\right)_{3}$	$-\mathrm{OCH}\left(\mathrm{CH}_{3}\right) \mathrm{CH}_{2} \mathrm{COOC}_{2} \mathrm{H}_{5}$	>50
5a	$-\mathrm{CH}(\mathrm{OH}) \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}$	(L)- $\mathrm{NHCH}\left[\mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{C}_{2} \mathrm{H}_{5}\right] \mathrm{COOCH}_{3}$	0.026 ± 0.008
5b	$-\mathrm{CH}(\mathrm{OH}) \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}$	$-\mathrm{N}\left(\mathrm{CH}_{3}\right) \mathrm{CH}_{2} \mathrm{COOC}_{2} \mathrm{H}_{5}$	0.21 ± 0.03
5c	$-\mathrm{CH}(\mathrm{OH}) \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}$	$-\mathrm{NHCH}_{2} \mathrm{CH}_{2} \mathrm{~N}\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)_{2}$	0.11 ± 0.02
5d	$-\mathrm{CH}(\mathrm{OH}) \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}$	$-\mathrm{NHCH}_{2} \mathrm{CH}_{2} \mathrm{~N}\left(\mathrm{CH}_{3}\right)_{2}$	0.014 ± 0.002
5e	$-\mathrm{CH}(\mathrm{OH}) \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}$	$-\mathrm{NHCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}\left(\mathrm{CH}_{3}\right)_{2}$	0.037 ± 0.005
5f	$-\mathrm{CH}(\mathrm{OH}) \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}$	$-\mathrm{NHCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)_{2}$	0.066 ± 0.012
5 g	$-\mathrm{CH}(\mathrm{OH}) \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}$	$-\mathrm{NHCH}_{2} \mathrm{C} \equiv \mathrm{CH}$	0.24 ± 0.01
5h	$-\mathrm{CH}(\mathrm{OH}) \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}$	$-\mathrm{NHCH}_{2} \mathrm{CH}\left(\mathrm{OCH}_{3}\right)_{2}$	0.15 ± 0.02
51	$-\mathrm{CH}(\mathrm{OH}) \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}$	$-\mathrm{NHCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2} \mathrm{O}$	0.018 ± 0.001
5j	$-\mathrm{CH}(\mathrm{OH}) \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}$	$-\mathrm{NHCH}_{2} \mathrm{CH}_{2} \mathrm{Br}$	0.13 ± 0.03
5k	$-\mathrm{CH}(\mathrm{OH}) \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}$	$-\mathrm{NHCH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}$	0.01 ± 0.0017
51	$-\mathrm{CH}(\mathrm{OH}) \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}$	$-\mathrm{N}\left(\mathrm{CH}_{3}\right) \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CN}$	1.96 ± 0.18
5m	$-\mathrm{CH}(\mathrm{OH}) \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}$	$-\mathrm{N}\left(\mathrm{CH}_{3}\right) \mathrm{CH}_{2} \mathrm{C}=\mathrm{CH}_{2}$	3.95 ± 0.33
5 n	$-\mathrm{CH}(\mathrm{OH}) \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}$	$-\mathrm{N}\left(\mathrm{CH}_{3}\right) \mathrm{C}_{6} \mathrm{H}_{5}$	6.4 ± 0.38
50	$-\mathrm{CH}(\mathrm{OH}) \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}$	$-\mathrm{N}\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CN}\right) \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CN}$	0.097 ± 0.011
5p	$-\mathrm{CH}(\mathrm{OH}) \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}$	$-\mathrm{OCH}\left(\mathrm{CH}_{3}\right) \mathrm{C} \equiv \mathrm{CH}$	0.2 ± 0.008
5q	$-\mathrm{CH}(\mathrm{OH}) \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}$	$-\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{C} \equiv \mathrm{CH}$	1.03 ± 0.28
5r	$-\mathrm{CH}(\mathrm{OH}) \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}$	$-\mathrm{OCH}\left(\mathrm{CH}_{3}\right) \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}$	0.38 ± 0.005
6a	$-\mathrm{COC}\left(\mathrm{CH}_{3}\right)_{3}$	(L)-NHCH[CH $\left.\left(\mathrm{CH}_{3}\right) \mathrm{C}_{2} \mathrm{H}_{5}\right] \mathrm{COOH}$	0.01 ± 0.003
6b	$-\mathrm{COC}\left(\mathrm{CH}_{3}\right)_{3}$	$-\mathrm{N}\left(\mathrm{CH}_{3}\right) \mathrm{CH}_{2} \mathrm{COOH}$	1.39 ± 0.21
7a	$-\mathrm{CH}(\mathrm{OH}) \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}$	(L)- $\mathrm{NHCH}\left[\mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{C}_{2} \mathrm{H}_{5}\right] \mathrm{COOH}$	0.0023 ± 0.001
7b	$-\mathrm{CH}(\mathrm{OH}) \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}$	$-\mathrm{N}\left(\mathrm{CH}_{3}\right) \mathrm{CH}_{2} \mathrm{COOH}$	0.74 ± 0.18
8a	$-\mathrm{COC}\left(\mathrm{CH}_{3}\right)_{3}$		>50
8b	$-\mathrm{COC}\left(\mathrm{CH}_{3}\right)_{3}$		>50
8c	$-\mathrm{COC}\left(\mathrm{CH}_{3}\right)_{3}$		>50
8d	$-\mathrm{COC}\left(\mathrm{CH}_{3}\right)_{3}$		45.6 ± 5.18
8e	$-\mathrm{COC}\left(\mathrm{CH}_{3}\right)_{3}$		2.32 ± 0.18
9a	$-\mathrm{CH}(\mathrm{OH}) \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}$		>50
9b	$-\mathrm{CH}(\mathrm{OH}) \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}$		>50

Table 1 (continued)

Compd	R_{1}	R_{2}	HL-60 cell differentiation inducing activity ${ }^{\text {a }}$ $\mathrm{EC}_{50}{ }^{\mathrm{b}}(\mu \mathrm{M})$
9c	$-\mathrm{CH}(\mathrm{OH}) \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}$		0.63 ± 0.21
9d	$-\mathrm{CH}(\mathrm{OH}) \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}$		>50
9e	$-\mathrm{CH}(\mathrm{OH}) \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}$		5.1 ± 1.1
10a	$-\mathrm{COC}\left(\mathrm{CH}_{3}\right)_{3}$		>50
10b	$-\mathrm{COC}\left(\mathrm{CH}_{3}\right)_{3}$		9.5 ± 0.88
11a	$-\mathrm{CH}(\mathrm{OH}) \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}$		>50
11b	$-\mathrm{CH}(\mathrm{OH}) \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}$		>50
LG190155			0.59 ± 0.18
Calcitriol			0.009 ± 0.0012
sw-22			0.0085 ± 0.0012

${ }^{\text {a }}$ Vitamin D_{3}-agonistic activity was estimated as HL-60 differentiation inducing ability.
${ }^{\mathrm{b}}$ Data represent mean $\pm \mathrm{SD}, \mathrm{n}=3,{ }^{*} \mathrm{P}<0.05$.

Table 2
Cellular anti-proliferative activities of the novel phenyl-pyrrolyl pentane derivatives.

Compd	Cell inhibition $\mathrm{IC}_{50}{ }^{\text {a }}(\mu \mathrm{M})$				LO2 ${ }^{\text {c }}$
	PC-3 ${ }^{\text {b }}$	MCF-7	Caco-2	HepG-2	
4c	0.03 ± 0.007	0.69 ± 0.11	1.6 ± 0.2	0.62 ± 0.01	2.5 ± 1.3
4d	2.3 ± 0.31	0.52 ± 0.08	1.6 ± 0.3	2.3 ± 0.45	2.5 ± 0.32
4e	1.6 ± 0.25	0.34 ± 0.01	1.4 ± 0.05	0.96 ± 0.23	0.67 ± 0.02
4f	1.8 ± 0.21	0.53 ± 0.07	1.0 ± 0.01	0.18 ± 0.01	2.3 ± 0.3
4i	0.011 ± 0.03	5.2 ± 0.67	3.6 ± 0.33	1.6 ± 0.31	0.31 ± 0.7
4k	0.48 ± 0.01	0.075 ± 0.01	1.9 ± 0.41	0.18 ± 0.03	2.5 ± 0.6
5b	25.5 ± 2.3	9.2 ± 2.9	12.2 ± 0.01	>50	10.1 ± 1.3
5c	0.22 ± 0.02	0.69 ± 0.26	2.31 ± 0.11	0.49 ± 0.01	2.5 ± 0.8
5d	1.63 ± 0.03	0.66 ± 0.03	1.3 ± 0.05	0.87 ± 0.01	2.6 ± 0.3
5e	3.1 ± 0.34	0.49 ± 0.01	1.9 ± 0.91	0.36 ± 0.04	0.47 ± 0.01
5f	2.5 ± 0.61	0.19 ± 0.015	1.8 ± 0.67	1.1 ± 0.3	2.5 ± 1.2
5g	16.2 ± 2.8	>50	39.1 ± 7.8	>50	4.4 ± 1.5
5h	14.6 ± 1.8	>50	>50	23.2 ± 5.3	22.2 ± 3.6
5 i	0.0079 ± 0.0023	2.07 ± 0.28	5.9 ± 1.1	1.29	0.81 ± 0.07
5k	0.94 ± 0.37	0.0059 ± 0.0021	1.0 ± 0.2	0.176	2.4 ± 0.3
51	1.7 ± 0.4	>50	>50	>50	14.9 ± 2.3
5m	25.9 ± 3.6	>50	>50	>50	6.3 ± 1.6
50	7.8 ± 1.7	0.48 ± 0.08	7.1 ± 1.8	41.95	1.7 ± 0.3
5p	38.2 ± 2.1	> 50	>50	>50	23.7 ± 3.7
6a	1.6 ± 0.3	0.16 ± 0.01	4.5 ± 0.8	0.247	1.5 ± 0.2
6b	18.4 ± 4.2	28.6 ± 2.9	35.9 ± 5.2	25.23	8.7 ± 1.8
7a	1.9 ± 0.2	2.0 ± 0.7	3.4 ± 0.2	0.127	1.4 ± 0.7
7b	23.9 ± 4.2	25.4 ± 3.2	31.9 ± 2.7	17.05	32.6 ± 5.8
9e	6.3 ± 1.7	>50	>50	>50	22.7 ± 3.4
11b	>50	>50	>50	>50	14.9 ± 2.8
LG190155	>50	7.8 ± 2.8	16.9 ± 2.5	>50	5.1 ± 1.8
Calcitriol	17.2 ± 3.8	5.6 ± 1.7	4.4 ± 0.8	>50	0.67 ± 0.05
sw-22	17.5 ± 2.6	2.8 ± 0.5	>50	47.55	17.3 ± 1.7

${ }^{\text {a }}$ b Data represent mean $\pm \mathrm{SD}, \mathrm{n}=3,{ }^{*} \mathrm{P}<0.05$.
${ }^{\mathrm{b}}$ PC-3 is a cells human prostate cancer cell lines which over-expresses VDR.
${ }^{\text {c }}$ LO2 is a human normal liver cell line.
moderate selective antitumor property.
It could be found that compounds $\mathbf{5 a} \mathbf{- 5 r}$ exhibited better antiproliferative activity than compounds $\mathbf{4 a}-\mathbf{4 r}$, indicating that
introduction of hydroxyl group into side chains of phenyl ring can significantly improve activity than carbonyl group. When amino or substituted amino groups were added to pyrrolyl side chains,
compound $\mathbf{5 c}-\mathbf{5 f}$ and $\mathbf{5 i}$ displayed stronger anti-proliferative activity. It suggested that replacement of the amino group with morpholine ring also demonstrated promising inhibition activity by the result of compound $\mathbf{5 k}$. Compound $\mathbf{6 a - 6 b}$ with the amino acids structure exhibited moderate antitumor activity. In addition, it is worthy to note that compound $\mathbf{5 0}$ with the structure of nitrile group introduced into amide bond showed good vitamin D_{3-} agonistic activity and remarkable anti-proliferation ability compared with 51-5n. It was disappointing that the inhibition activities of tris-aromatic analogs, phenyl amines or hydroxy benzene directly conjugating to pyrrolyl side, were almost lost.

2.2.4. In vivo calcemic activity assay

The level of serum calcium was measured to evaluate the safety profile of these compounds [21]. Compounds $\mathbf{5 i}$ and $\mathbf{5 k}$ were chosen for calcemic activity assay in vivo, using Calcitriol as the positive control and normal saline as blank, as shown in Fig. 3.

A remarkable increasing in serum calcium $(13.11 \mathrm{mg} / \mathrm{dl}$, compared with $7.25 \mathrm{mg} / \mathrm{dl}$ in blank control, $\mathrm{P}<0.01$) was noted after given Calcitriol ($0.5 \mu \mathrm{~g} / \mathrm{kg} /$ day $)$ for 7 days. However, there was no significant change on serum calcium in rats when treated with compounds $\mathbf{5 i}$, and $\mathbf{5 k}(0.5 \mathrm{mg} / \mathrm{kg} /$ day, $10 \mathrm{mg} / \mathrm{kg} /$ day and $30 \mathrm{mg} / \mathrm{kg} /$ day, respectively). Compared with Calcitriol, sw-22 and LG190155 (given $30 \mathrm{mg} / \mathrm{kg} /$ day each, $\mathrm{P}<0.05$ for $\mathrm{sw}-22, \mathrm{P}<0.05$ for LG190155) as well as $\mathbf{5 i}$ and $\mathbf{5 k}$ ($\mathrm{P}<0.05$ for $\mathbf{5 i}, \mathrm{P}<0.01$ for $\mathbf{5 k}$) dramatically decreased serum calcium level.

2.3. Molecular docking study

Docking study was carried out using Schrödinger Glide version 7.3 and MOE 2009. Compounds 5i and 5k were docked into VDR ligand binding domain (VDR LBD, PDB ID: 2ZFX). The resulting structures of the active site were shown in Fig. 4. Also, the structures of VDR LBD-5i and VDR LBD-5k complexes overlapped with the VDR LBD- $1 \alpha, 25(\mathrm{OH})_{2} \mathrm{D}_{3}$ complex were demonstrated in Fig. 5.

Hydroxyl group beside phenyl ring of compound $\mathbf{5 k}$ was able to form hydrogen binding interactions with the His 393 and His 301 of VDR LBD. On the other side of structure the groups of amine and carbonyl formed hydrogen binding with Arg 270 and Ser 274, respectively. Hydroxyl of compound $\mathbf{5 i}$ formed same hydrogen binding interaction with His 393 and His 301 and the morpholine ring was able to form hydrogen binding interaction with $\operatorname{Arg} 270$. It is interesting that carbonyl of compound $\mathbf{5 i}$ formed hydrogen binding with Ser 233 but not Ser 274 because of the morpholine ring, which resulted from the structure of spatial configuration reversal. In addition, it is worth noting that compounds $\mathbf{5 i}$ and $\mathbf{5 k}$ exhibited similar hydrogen binding interaction to compound R301 which 2'-hydroxy forms hydrogen bonds with His 301 and His 393 and 2-hydroxy does with Ser 233, and Arg 270 [22].

The docking study revealed that the compounds $\mathbf{5 i}$ and $\mathbf{5 k}$

Fig. 3. In vivo calcemic activity of Calcitriol, LG190155, sw-22, compounds $\mathbf{5 i}$ and $\mathbf{5 k}$.
mimicked the roles of the 1α-hydroxyl and 25 -hydroxyl groups of $1 \alpha, 25(\mathrm{OH})_{2} \mathrm{D}_{3}$ without direct structural relationship to $1 \alpha, 25(\mathrm{OH})_{2} \mathrm{D}_{3}$. Compared with $1 \alpha, 25(\mathrm{OH})_{2} \mathrm{D}_{3}$, compounds $\mathbf{5 i}$ and $\mathbf{5 k}$ formed hydrogen binding interaction with Ser 233, $\operatorname{Arg} 270$, His 301 and His 393 as discussed above, which were embed in the same position of the binding pocket. Apart from this, compounds $\mathbf{5 i}$ and 5k were also able to form hydrogen bonds with Ser 233 and Ser 274, respectively. All of the above suggested that compounds $\mathbf{5 i}$ and $\mathbf{5 k}$ worked similarly as $1 \alpha, 25(\mathrm{OH})_{2} \mathrm{D}_{3}$.

3. Conclusions

In summary, a series of novel phenyl-pyrrolyl pentane derivatives were synthesized and systematically tested for cancer therapy. The VDR binding ability was tested using PolarScreen VDR Competitor Assay Red and Vitamin D_{3}-agonistic activity was estimated via inducing differentiation ability on HL-60 cells in vitro. The result indicated that introducing hydroxyl group into one side, beside phenyl ring and adding hydrophilic moieties to pyrrolyl ring, were able to improve vitamin D_{3}-agonistic activity significantly. In vitro cell cytotoxicity was evaluated against PC-3, MCF-7, Caco-2 and HepG-2 cells by MTT assay. Among all, compound $\mathbf{5 i}$ exhibited best selective activity against PC-3 cell with IC_{50} value of $0.00797 \mu \mathrm{M}$. Meanwhile, compound $5 \mathbf{5 k}$ demonstrated excellent inhibition against MCF-7, Caco-2 and HepG-2 cells with IC_{50} value of $0.00587,1.01$ and $0.176 \mu \mathrm{M}$, respectively. Therefore, the most promising compounds $\mathbf{5 i}$ and $\mathbf{5 k}$ were chosen to evaluate safety in vivo, and neither of them showed potential on raising serum calcium level. Docking study proved that the spatial structures of compounds $\mathbf{5 i}$ and $\mathbf{5 k}$ were similar to $1.25(\mathrm{OH})_{2} \mathrm{D}_{3}$. These findings indicated that the compounds with phenyl-pyrrolyl pentane skeleton are potentially applicable for cancer therapy as nonsecosteroidal VDR ligands.

4. Experimental sections

4.1. Chemistry experiment

4.1.1. Materials and instruments

All reagents and reactants were purchased from commercial suppliers unless additional informed. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR were recorded employing Bruker AV-300 or AV-500 instruments using CDCl_{3}. Chemical shifts are reported in d (ppm) units relative to the internal standard tetramethylsilane (TMS). The reactions were monitored by thin layer chromatography (TLC). Column chromatography separations were progressed on silica gel (200-300 mesh).

4.1.2. Purity analysis

The purity of the synthesized compounds were measured by high performance liquid chromatography (HPLC, Shimadzu LC2010 system, Kyoto, Japan) equipped with a Diamonsil C18 column ($5 \mu \mathrm{~m}$ particle size, $250 \mathrm{~mm} \times 4.6 \mathrm{~mm}$). The mobile phase consisted of acetonitrile and water with a flow rate of $1.0 \mathrm{~mL} / \mathrm{min}$. The detection wavelength was 540 nm and sample injected volume was $20 \mu \mathrm{~L}$. All compounds evaluated for VDR agonistic potency had a purity of $\geq 95 \%$.

4.1.3. General procedure for the synthesis of phenyl-pyrrolyl pentane derivatives ($\mathbf{4 a}-\mathbf{4 r}, \mathbf{5 a}-\mathbf{5 r}, \mathbf{6 a}-\mathbf{6 b}, \mathbf{7 a}-\mathbf{7 b}$)

4.1.3.1. Methyl (5-(3-(4-(3,3-dimethyl-2-oxobutoxy)-3-methylphenyl)pentan-3-yl)-1-ethyl-1H-pyrrole-2-carbonyl)-L-alloisoleucinate (4a). To a solution of compound $3(0.50 \mathrm{~g}, 1.2 \mathrm{mmol})$ in $\mathrm{CHCl}_{3}(10 \mathrm{~mL})$ was added $\mathrm{EDCl}(0.25 \mathrm{~g}, 1.3 \mathrm{mmol})$ and HOBT (0.18 g , 1.3 mmol). After stirring at $25{ }^{\circ} \mathrm{C}$ for 2.0 h , L-isoleucine (0.24 g ,

Fig. 4. Binding models of compounds $\mathbf{5 k}$ and $\mathbf{5 i}$ docked into VDR ligand binding domain (VDR LBD).
$1.3 \mathrm{mmol})$ and $\mathrm{Et}_{3} \mathrm{~N}(0.61 \mathrm{~g}, 6.0 \mathrm{mmol})$ were added, the reaction mixture was stirred at room temperature overnight and poured into $\mathrm{H}_{2} \mathrm{O}$. The solution was extracted with ethyl acetate $(3 \times 15 \mathrm{~mL})$ and the organic layer was washed with brine, then dried over MgSO_{4} and filtered. The ethyl acetate extracts were concentrated. The oil was purified by column chromatography with petroleumether/ethyl acetate ($4 / 1, \mathrm{v} / \mathrm{v}$) to give compound 4 a as white oil ($0.73 \mathrm{~g}, 73 \%$ yield). HRMS, $\mathrm{ESI}^{+}, \mathrm{m} / \mathrm{z}$: calcd for $\mathrm{C}_{32} \mathrm{H}_{48} \mathrm{~N}_{2} \mathrm{O}_{5}(\mathrm{M}+\mathrm{H})^{+}$ 541.3636 found 541.3639. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 7.02(1 \mathrm{H}, \mathrm{s})$, $6.98(1 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}), 6.54(1 \mathrm{H}, \mathrm{d}, J=1.8 \mathrm{~Hz}), 6.50(1 \mathrm{H}, \mathrm{d}$, $J=8.4 \mathrm{~Hz}), 6.27(1 \mathrm{H}, \mathrm{d}, J=1.8 \mathrm{~Hz}), 4.84(2 \mathrm{H}, \mathrm{s}), 4.63(1 \mathrm{H}, \mathrm{m}), 4.28$ $(2 \mathrm{H}, \mathrm{q}, J=7.2 \mathrm{~Hz}), 3.73(3 \mathrm{H}, \mathrm{s}), 2.26(3 \mathrm{H}, \mathrm{s}), 1.93(6 \mathrm{H}, \mathrm{m}), 1.48(1 \mathrm{H}$, $\mathrm{m}), 1.34(3 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}), 1.12(9 \mathrm{H}, \mathrm{s}), 0.91(6 \mathrm{H}, \mathrm{m}), 0.65(6 \mathrm{H}, \mathrm{t}$, $J=7.2 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 210.02,172.92,161.59$, 154.11, 140.67, 131.15, 130.47, 125.84, 125.03, 123.73, 111.57, 110.20, 69.23, 56.16, $51.98,44.95,43.71,38.19,30.36,26.53,25.41,17.18$, $16.66,15.48,11.56,8.54$.
4.1.3.2. Ethyl N-(5-(3-(4-(3,3-dimethyl-2-oxobutoxy)-3-methylphenyl)pentan-3-yl)-1-ethyl-1H-pyrrole-2-carbonyl)-Nmethylglycinate (4b). To a solution of compound $3(0.50 \mathrm{~g}$, 1.2 mmol) in $\mathrm{CH}_{3} \mathrm{CN}(10 \mathrm{~mL})$ was added 4-dimethylaminopyridine ($0.59 \mathrm{~g}, 4.8 \mathrm{mmol}$) and 4-nitrobenzenesulfonyl chloride (0.28 g , 1.3 mmol). After stirring at $70{ }^{\circ} \mathrm{C}$ for 2.0 h , ethyl sarcosinate hydrochloride ($0.20 \mathrm{~g}, 1.3 \mathrm{mmol}$) was added. The reaction mixture was stirred overnight and poured into $\mathrm{H}_{2} \mathrm{O}$. The solution was extracted with ethyl acetate ($3 \times 10 \mathrm{~mL}$) and the organic layer was washed with brine, then dried over MgSO_{4} and filtered. The ethyl acetate extracts were concentrated. The oil was purified by column chromatography with petroleumether/ethyl acetate ($5 / 1, \mathrm{v} / \mathrm{v}$) to give compound 4b as white oil ($0.51 \mathrm{~g}, 81 \%$ yield). HRMS, ESI ${ }^{+}$, m / z :
calcd for $\mathrm{C}_{30} \mathrm{H}_{44} \mathrm{~N}_{2} \mathrm{O}_{5}(\mathrm{M}+\mathrm{H})^{+}$513.3323, found 513.3329. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 7.01(1 \mathrm{H}, \mathrm{s}), 6.95(1 \mathrm{H}, \mathrm{d}, J=7.3 \mathrm{~Hz}), 6.50(1 \mathrm{H}, \mathrm{d}$, $1.8 \mathrm{~Hz}), 6.47(1 \mathrm{H}, \mathrm{d}, J=7.3 \mathrm{~Hz}), 6.05(1 \mathrm{H}, \mathrm{d}, J=1.8 \mathrm{~Hz}), 4.82(2 \mathrm{H}, \mathrm{s})$, $4.15(6 \mathrm{H}, \mathrm{m}), 3.14(3 \mathrm{H}, \mathrm{s}), 2.24(3 \mathrm{H}, \mathrm{s}), 1.88(4 \mathrm{H}, \mathrm{q}, J=7.5 \mathrm{~Hz}), 1.31$ $(3 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}), 1.12(9 \mathrm{H}, \mathrm{s}), 0.64(6 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 190.32,169.54,162.35,154.83,140.67,130.57$, $130.41,125.89,125.79,123.03,110.12,69.64,61.15,45.10,43.04$, 30.82, 26.35, 17.11, 16.61, 14.13, 8.64.
4.1.3.3. N-(2-(diethylamino)ethyl)-5-(3-(4-(3,3-dimethyl-2-oxobutoxy)-3-methylphenyl)pentan-3-yl)-1-ethyl-1H-pyrrole-2carboxamide (4c). In the same method as $\mathbf{4 a}, \mathbf{4 c}$ was prepared from 3 and N, N-diethylethylenediamine. White oil, $0.53 \mathrm{~g}, 85 \%$ yield. HRMS, ESI ${ }^{+}, m / z$: calcd for $\mathrm{C}_{31} \mathrm{H}_{49} \mathrm{~N}_{3} \mathrm{O}_{3}(\mathrm{M}+\mathrm{H})^{+} 512.3847$ found $512.3853 .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 7.02(1 \mathrm{H}, \mathrm{s}), 6.98(1 \mathrm{H}, \mathrm{d}$, $J=8.6 \mathrm{~Hz}), 6.70(1 \mathrm{H}, \mathrm{d}, J=1.5 \mathrm{~Hz}), 6.51(1 \mathrm{H}, \mathrm{d}, J=8.6 \mathrm{~Hz}), 6.46(1 \mathrm{H}$, $\mathrm{d}, J=1.5 \mathrm{~Hz}), 4.84(2 \mathrm{H}, \mathrm{s}), 4.30(2 \mathrm{H}, \mathrm{q}, J=7.2 \mathrm{~Hz}), 3.75(2 \mathrm{H}, \mathrm{q}$, $J=6.0 \mathrm{~Hz}), 3.11(6 \mathrm{H}, \mathrm{m}), 2.25(3 \mathrm{H}, \mathrm{s}), 1.94(4 \mathrm{H}, \mathrm{q}, J=7.2 \mathrm{~Hz}), 1.34(9 \mathrm{H}$, $\mathrm{m}), 1.26(9 \mathrm{H}, \mathrm{s}), 0.65(6 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ : $210.32,162.12,154.42,140.34,130.88,130.37,125.94,125.40,124.38$, 124.32, 111.36, 110.15, 69.32, 51.84, 46.98, 44.97, 43.59, 36.78, 33.60, 30.53, 26.07, 17.25, 16.61, 11.80, 8.58.
4.1.3.4. 5-(3-(4-(3,3-Dimethyl-2-oxobutoxy)-3-methylphenyl)pen-tan-3-yl)-N-(2-(dimethlamino)ethyl)-1-ethyl-1H-pyrrole-2carboxamide ($\mathbf{4 d}$). In the same method as $\mathbf{4 a}, \mathbf{4 d}$ was prepared from 3 and 2-aminoethyldime-thylamine. White oil, $0.47 \mathrm{~g}, 81 \%$ yield. HRMS, ESI ${ }^{+}, m / z$: calcd for $\mathrm{C}_{29} \mathrm{H}_{45} \mathrm{~N}_{3} \mathrm{O}_{3}(\mathrm{M}+\mathrm{H})^{+} 484.3534$ found 484.3539. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 6.98(1 \mathrm{H}, \mathrm{s}), 6.94(1 \mathrm{H}, \mathrm{d}$, $J=8.4 \mathrm{~Hz}), 6.94(1 \mathrm{H}, \mathrm{d}, J=1.8 \mathrm{~Hz}), 6.56(1 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}), 6.45(1 \mathrm{H}$, $\mathrm{d}, J=1.8 \mathrm{~Hz}), 5.06(2 \mathrm{H}, \mathrm{s}), 4.27(2 \mathrm{H}, \mathrm{d}, J=6.9 \mathrm{~Hz}), 3.28(2 \mathrm{H}, \mathrm{q}$,

Fig. 5. Structures of VDR LBD-5k and VDR LBD-5i complexes overlapped with the VDR LBD-1 $\alpha, 25(\mathrm{OH})_{2} \mathrm{D}_{3}$ complex.
$J=6.3 \mathrm{~Hz}), 2.63(2 \mathrm{H}, \mathrm{t}, J=6.3 \mathrm{~Hz}), 2.38(6 \mathrm{H}, \mathrm{s}), 2.15(3 \mathrm{H}, \mathrm{s}), 1.89(4 \mathrm{H}$, $\mathrm{q}, J=6.9 \mathrm{~Hz}), 1.23(3 \mathrm{H}, \mathrm{q}, J=6.9 \mathrm{~Hz}) .1 .11(9 \mathrm{H}, \mathrm{s}), 0.65(6 \mathrm{H}, \mathrm{q}$, $J=6.9 \mathrm{~Hz}$). ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 210.34,162.45,153.94$, $140.77,131.35,130.43,124.93,123.15,118.69,110.73,110.13,69.47$, 58.04, 45.82, 44.81, 43.74, 34.68, 30.21, 26.36, 17.23, 16.64, 8.54.
4.1.3.5. 5-(3-(4-(3,3-Dimethyl-2-oxobutoxy)-3-methylphenyl)pen-tan-3-yl)-N-(3-(dimethylamino)propyl)-1-ethyl-1H-pyrrole-2carboxamide (4e). In the same method as 4a, 4e was prepared from 3 and 1-amino-3-dimethylaminopropane. White oil, $0.48 \mathrm{~g}, 86 \%$ yield. HRMS, $\mathrm{ESI}^{+}, m / z$: calcd for $\mathrm{C}_{30} \mathrm{H}_{47} \mathrm{~N}_{3} \mathrm{O}_{3}(\mathrm{M}+\mathrm{H})^{+} 498.3691$ found 498.3694. ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 7.03(1 \mathrm{H}, \mathrm{s}), 6.97(1 \mathrm{H}$, $\mathrm{d}, J=7.8 \mathrm{~Hz}), 6.53(1 \mathrm{H}, \mathrm{d}, J=1.8 \mathrm{~Hz}), 6.49(1 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}), 6.26$ $(1 \mathrm{H}, \mathrm{d}, J=1.8 \mathrm{~Hz}), 4.85(2 \mathrm{H}, \mathrm{s}), 4.31(2 \mathrm{H}, \mathrm{q}, J=6.9 \mathrm{~Hz}), 3.45(2 \mathrm{H}, \mathrm{m})$, $2.68(2 \mathrm{H}, \mathrm{t}, J=6.6 \mathrm{~Hz}), 2.41(6 \mathrm{H}, \mathrm{s}), 2.26(3 \mathrm{H}, \mathrm{s}), 1.91(6 \mathrm{H} . \mathrm{m}), 1.37$ $(3 \mathrm{H}, \mathrm{t}, J=6.9 \mathrm{~Hz}), 1.12(9 \mathrm{H}, \mathrm{s}), 0.66(6 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 210.29,162.30,153.99,140.77,131.17,130.46$, $125.79,124.85,123.62,69.54,58.24,44.86,43.69,35.58,30.27$, 26.66, 17.25, 8.66.
4.1.3.6. N-(3-(Diethylamino)propyl)-5-(3-(4-(3,3-dimethyl-2-oxobutoxy)-3-methylphenyl)pentan-3-yl)-1-ethyl-1H-pyrrole-2carboxamide (4f). In the same method as $\mathbf{4 a}, \mathbf{4 f}$ was prepared from 3 and 3-diethylaminopropylamine. Yellow oil, $0.52 \mathrm{~g}, 83 \%$ yield. HRMS, $\mathrm{ESI}^{+}, m / z$: calcd for $\mathrm{C}_{32} \mathrm{H}_{51} \mathrm{~N}_{3} \mathrm{O}_{3}(\mathrm{M}+\mathrm{H})^{+} 526.4003$ found 526.4014. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 6.99(1 \mathrm{H}, \mathrm{s}), 6.97(1 \mathrm{H}, \mathrm{d}$, $J=8.7), 6.50(1 \mathrm{H}, \mathrm{d}, J=1.8 \mathrm{~Hz}), 6.47(1 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}), 6.27(1 \mathrm{H}, \mathrm{d}$, $J=1.8 \mathrm{~Hz}), 4.82(2 \mathrm{H}, \mathrm{s}), 4.31(2 \mathrm{H}, \mathrm{q}, J=8.1 \mathrm{~Hz}), 3.34(2 \mathrm{H}, \mathrm{m}), 2.72$
$(6 \mathrm{H}, \mathrm{m}), 2.26(3 \mathrm{H}, \mathrm{s}), 1.86(6 \mathrm{H}, \mathrm{m}), 1.32(3 \mathrm{H}, \mathrm{t}, J=8.1 \mathrm{~Hz}), 1.24(9 \mathrm{H}, \mathrm{s})$, $1.09(6 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}), 0.64(6 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR 75 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta: 210.17,162.37,153.98,140.84,131.15,125.97,124.38,112.07$, $110.10,69.53,51.03,46.57,45.85,44.86,43.61,37.95,26.65,24.53$, 17.23, 9.77, 8.53.
4.1.3.7. 5-(3-(4-(3,3-Dimethyl-2-oxobutoxy)-3-methylphenyl)pen-tan-3-yl)-1-ethyl-N-(prop-2-yn-1-yl)-1H-pyrrole-2carboxamide ($\mathbf{4 g}$). In the same method as $\mathbf{4 a}, \mathbf{4 g}$ was prepared from 3 and 2-propynylamine. White oil, $0.38 \mathrm{~g}, 71 \%$ yield. HRMS, ESI ${ }^{+}$, m/ z : calcd for $\mathrm{C}_{28} \mathrm{H}_{38} \mathrm{~N}_{2} \mathrm{O}_{3}(\mathrm{M}+\mathrm{H})^{+} 451.2955$ found 451.2957. ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 7.02(1 \mathrm{H}, \mathrm{s}), 6.98(1 \mathrm{H}, \mathrm{d}, J=6.6 \mathrm{~Hz}), 6.60(1 \mathrm{H}, \mathrm{d}$, $J=1.8 \mathrm{~Hz}), 6.52(1 \mathrm{H}, \mathrm{d}, J=6.6 \mathrm{~Hz}), 6.21(1 \mathrm{H}, \mathrm{d}, J=1.8 \mathrm{~Hz}), 5.92(1 \mathrm{H}$, bs), $4.86(1 \mathrm{H} . \mathrm{s}), 4.34(2 \mathrm{H}, \mathrm{q}, J=6.9 \mathrm{~Hz}), 4.13(1 \mathrm{H}, \mathrm{m}), 2.25(3 \mathrm{H}, \mathrm{s})$, $1.95(4 \mathrm{H}, \mathrm{q}, J=6.3 \mathrm{~Hz}), 1.40(3 \mathrm{H}, J=6.9 \mathrm{~Hz}), 1.27(9 \mathrm{H}, \mathrm{s}), 0.67(6 \mathrm{H}, \mathrm{t}$, $J=6.3 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 210.10,161.42,154.09$, $149.65,131.30,130.48,125.93,123.39,111.90,110.08,80.04,71.30$, 69.52, 44.94, 43.76, 30.27, 26.36, 17.21, 8.52.
4.1.3.8. N-(2,2-Dimethoxyethyl)-5-(3-(4-(3,3-dimethyl-2-oxobutoxy)-3-methylphenyl)pentan-3-yl)-1-ethyl-1H-pyrrole-2carboxamide ($\mathbf{4 h}$). In the same method as $\mathbf{4 a}, \mathbf{4 h}$ was prepared from 3 and 2,2-dimethoxyethylamine. White oil, $0.49 \mathrm{~g}, 84 \%$ yield. HRMS, $\mathrm{ESI}^{+}, m / z \mathrm{~m} / \mathrm{z}$: calcd for $\mathrm{C}_{29} \mathrm{H}_{44} \mathrm{~N}_{2} \mathrm{O}_{4}(\mathrm{M}+\mathrm{H})^{+} 501.3323$ found 501.3325. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 7.01(1 \mathrm{H}, \mathrm{s}), 6.96(1 \mathrm{H}, \mathrm{d}$, $J=10.5 \mathrm{~Hz}), 6.55(1 \mathrm{H}, \mathrm{d}, J=16 \mathrm{~Hz}), 6.51(1 \mathrm{H}, \mathrm{d}, J=10.5 \mathrm{~Hz}), 6.19(1 \mathrm{H}$, $\mathrm{d}, J=16 \mathrm{~Hz}), 4.84(2 \mathrm{H}, \mathrm{s}), 4.42(1 \mathrm{H}, \mathrm{t}, J=5.4 \mathrm{~Hz}), 4.33(2 \mathrm{H}, \mathrm{q}$, $J=8.2 \mathrm{~Hz}), 3.47(2 \mathrm{H}, \mathrm{t}, J=5.4 \mathrm{~Hz}), 3.41(6 \mathrm{H}, \mathrm{s}), 2.24(3 \mathrm{H}, \mathrm{s}), 1.90(4 \mathrm{H}$,
$\mathrm{q}, J=7.2 \mathrm{~Hz}), 1.36(3 \mathrm{H}, \mathrm{t}, J=8.2 \mathrm{~Hz}), 1.26(9 \mathrm{H}, \mathrm{s}), 0.64(6 \mathrm{H}, \mathrm{t}$, $J=7.2 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 210.17,161.23,140.69$, 130.48, 125.92, 125.81, 124.72, 111.52, 110.14, 103.00, 69.60, 54.43, $44.95,43.69,40.69,54.43,44.95,43.69,40.69,30.36,26.35,26.05$, 17.22, 16.66, 8.54.
4.1.3.9. 5-(3-(4-(3,3-Dimethyl-2-oxobutoxy)-3-methylphenyl)pen-tan-3-yl)-1-ethyl-N-(3-morpholinopropyl)-1H-pyrrole-2carboxamide ($\mathbf{4 i}$). In the same method as $\mathbf{4 a}, \mathbf{4 i}$ was prepared from 3 and 3-morpholinopropan-1-amine. Light yellow oil, $0.53 \mathrm{~g}, 82 \%$ yield. HRMS, ESI ${ }^{+}, m / z$: calcd for $\mathrm{C}_{32} \mathrm{H}_{49} \mathrm{~N}_{3} \mathrm{O}_{4}(\mathrm{M}+\mathrm{H})^{+} 540.3796$ found 540.3802. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 7.02(1 \mathrm{H}, \mathrm{s}), 6.99(1 \mathrm{H}$, $\mathrm{d}, J=8.4 \mathrm{~Hz}), 6.58(1 \mathrm{H}, \mathrm{d}, J=1.8 \mathrm{~Hz}), 6.51(1 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}), 6.21$ $(1 \mathrm{H}, \mathrm{d}, J=1.8 \mathrm{~Hz}), 4.85(2 \mathrm{H}, \mathrm{s}), 4.34(2 \mathrm{H}, \mathrm{q}, J=7.2 \mathrm{~Hz}), 3.68(4 \mathrm{H}, \mathrm{m})$, $3.45(2 \mathrm{H}, \mathrm{m}), 2.56(6 \mathrm{H}, \mathrm{m}), 2.21(3 \mathrm{H}, \mathrm{s}), 1.95(4 \mathrm{H}, \mathrm{q}, J=7.2 \mathrm{~Hz}), 1.35$ $(3 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}), 0.65(6 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$: 210.13, 162.13, 154.06, 140.82, 131.22, 130.39, 125.89, 124.44, 111.33, 110.17, 69.52, 66.23, 58.33, 53.61, 45.80, 44.87, 43.63, 39.11, 30.08, 26.36, 24.45, 17.27, 8.49.
4.1.3.10. N -(2-Bromoethyl)-5-(3-(4-(3,3-dimethyl-2-oxobutoxy)-3-methylphenyl)pentan-3-yl)-1-ethyl-1H-pyrrole-2-carboxamide (4j).
In the same method as $\mathbf{4 a}, \mathbf{4 j}$ was prepared from 3 and 2 bromoethylamine hydrobromide. Light yellow oil, $0.45 \mathrm{~g}, 73 \%$ yield. HRMS, $\mathrm{ESI}^{+}, \mathrm{m} / z$: calcd for $\mathrm{C}_{29} \mathrm{H}_{39} \mathrm{BrN}_{2} \mathrm{O}_{3}(\mathrm{M}-\mathrm{Br}+\mathrm{H})^{+}$ 439.2955 found $439.2960 .{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 7.01(1 \mathrm{H}, \mathrm{s})$, $6.96(1 \mathrm{H}, \mathrm{d}, J=8.1 \mathrm{~Hz}), 6.54(1 \mathrm{H}, \mathrm{d}, J=1.8 \mathrm{~Hz}), 6.51(1 \mathrm{H}, \mathrm{d}, J=8.1 \mathrm{~Hz})$, $6.47(1 \mathrm{H}, \mathrm{d}, J=1.8 \mathrm{~Hz}), 4.82(2 \mathrm{H}, \mathrm{s}), 4.32(2 \mathrm{H}, \mathrm{q}, J=7.2 \mathrm{~Hz}), 4.23(2 \mathrm{H}$, $\mathrm{t}, J=8.7 \mathrm{~Hz}), 3.99(2 \mathrm{H}, \mathrm{t}, J=8.7 \mathrm{~Hz}), 2.24(3 \mathrm{H}, \mathrm{s}), 1.92(4 \mathrm{H}, \mathrm{q}$, $J=7.5 \mathrm{~Hz}), 1.34(3 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}), 1.25(9 \mathrm{H}, \mathrm{s}), 0.67(6 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz})$. ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 209.35,154.03,140.85,131.65,130.46$, $125.78,124.44,114.72,110.21,69.72,65.90,55.18,44.94,43.48$, 30.42, 26.36, 16.79, 16.65, 8.58.
4.1.3.11. N-(2-Aminoethyl)-5-(3-(4-(3,3-dimethyl-2-oxobutoxy)-3-methylphenyl)pentan-3-yl)-1-ethyl-1H-pyrrole-2-carboxamide (4k). In the same method as $\mathbf{4 a}, \mathbf{4 k}$ was prepared from 3 and ethylenediamine. White oil, $0.44 \mathrm{~g}, 80 \%$ yield. $\mathrm{HRMS}, \mathrm{ESI}^{+}, m / z$: calcd for $\mathrm{C}_{29} \mathrm{H}_{41} \mathrm{~N}_{3} \mathrm{O}_{3}(\mathrm{M}+\mathrm{H})^{+} 456.3221$ found $456.3225 .{ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta: 7.10(1 \mathrm{H}, \mathrm{s}), 6.94(1 \mathrm{H}, \mathrm{d}, J=8.1 \mathrm{~Hz}), 6.56(1 \mathrm{H}, \mathrm{d}, J=1.6 \mathrm{~Hz})$, $6.48(1 \mathrm{H}, \mathrm{d}, J=8.1 \mathrm{~Hz}), 6.43(1 \mathrm{H}, \mathrm{d}, J=1.6 \mathrm{~Hz}), 5.04(2 \mathrm{H}, \mathrm{s}), 4.21(2 \mathrm{H}$, $\mathrm{q}, J=6.5 \mathrm{~Hz}), 3.50(2 \mathrm{H}, \mathrm{bs}), 3.05(2 \mathrm{H}, \mathrm{bs}), 2.18(3 \mathrm{H}, \mathrm{s}), 1.89(4 \mathrm{H}, \mathrm{q}$, $J=6.9 \mathrm{~Hz}), 1.25(3 \mathrm{H}, \mathrm{t}, J=6.6 \mathrm{~Hz}), 1.21(9 \mathrm{H}, \mathrm{s}), 0.60(6 \mathrm{H}, \mathrm{q}, J=6.9 \mathrm{~Hz})$. ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 210.17,160.23,153.89,140.86,131.25$, $130.42,125.84,125.12,113.38,69.51,44.86,43.75,30.22,26.34$, 17.20, 16.61, 8.55.
4.1.3.12. N-(2-Cyanoethyl)-5-(3-(4-(3,3-dimethyl-2-oxobutoxy)-3-methylphenyl)pentan-3-yl)-1-ethyl-N-methyl-1H-pyrrole-2carboxamide ($\mathbf{4 l}$). In the same method as $\mathbf{4 b}, \mathbf{4 l}$ was prepared from 3 and 3-methylaminopropionitrile. White oil, $0.43 \mathrm{~g}, 75 \%$ yield. HRMS, ESI ${ }^{+}, m / z$: calcd for $\mathrm{C}_{29} \mathrm{H}_{41} \mathrm{~N}_{3} \mathrm{O}_{3}(\mathrm{M}+\mathrm{H})^{+} 480.3221$ found 480.3216. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 7.03(1 \mathrm{H}, \mathrm{s}), 6.98(1 \mathrm{H}, \mathrm{d}$, $J=8.7 \mathrm{~Hz}), 6.56(1 \mathrm{H}, \mathrm{d}, J=1.8 \mathrm{~Hz}), 6.51(1 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}), 6.08(1 \mathrm{H}$, d, $J=1.8 \mathrm{~Hz}), 4.86(2 \mathrm{H}, \mathrm{s}), 4.13(2 \mathrm{H}, \mathrm{q}, J=7.2 \mathrm{~Hz}), 3.71(2 \mathrm{H}, \mathrm{t}$, $J=6.6 \mathrm{~Hz}), 3.25(3 \mathrm{H}, \mathrm{s}), 2.72(2 \mathrm{H}, \mathrm{t}, J=6.6 \mathrm{~Hz}), 2.21(3 \mathrm{H}, \mathrm{s}), 1.92(4 \mathrm{H}$, q, $J=7.5 \mathrm{~Hz}), 1.36(3 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}), 1.26(9 \mathrm{H}, \mathrm{s}), 0.67(6 \mathrm{H}, \mathrm{t}$, $J=7.5 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 210.11,164.61,154.06$, $140.56,130.65,130.52,125.87,123.36,122.78,113.72,110.10,69.55$, 45.14, 45.07, 43.12, 30.70, 26.36, 17.20. 16.66, 16.27, 8.63.
4.1.3.13. N-Allyl-5-(3-(4-(3,3-dimethyl-2-oxobutoxy)-3-methylphenyl)pentan-3-yl)-1-ethyl-N-methyl-1H-pyrrole-2carboxamide ($\mathbf{4 m}$). In the same method as $\mathbf{4 b}, \mathbf{4 m}$ was prepared from 3 and N -allylmethylamine. White oil, $0.41 \mathrm{~g}, 73 \%$ yield. HRMS,
$\mathrm{ESI}^{+}, m / z$: calcd for $\mathrm{C}_{29} \mathrm{H}_{42} \mathrm{~N}_{2} \mathrm{O}_{3}(\mathrm{M}+\mathrm{H})^{+} 467.3268$ found 467.3259 . ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 7.02(1 \mathrm{H}, \mathrm{s}), 6.98(1 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz})$, $6.49(1 \mathrm{H}, \mathrm{d}, J=1.8 \mathrm{~Hz}), 6.48(1 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}), 6.07(1 \mathrm{H}, \mathrm{d}$, $J=1.8 \mathrm{~Hz}), 5.81(1 \mathrm{H}, \mathrm{m}), 5.18(1 \mathrm{H}, \mathrm{m}), 4.83(2 \mathrm{H}, \mathrm{s}), 4.08(4 \mathrm{H}, \mathrm{m}), 3.02$ $(3 \mathrm{H}, \mathrm{s}), 2.25(3 \mathrm{H}, \mathrm{s}), 1.90(4 \mathrm{H}, \mathrm{q}, J=7.5 \mathrm{~Hz}), 1.34(3 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz})$, $1.25(9 \mathrm{H}, \mathrm{s}), 0.65(6 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ : $162.32,152.42,140.75,133.35,130.60,130.22,125.87,125.77,122.67$, 117.11, 112.71, 110.09, 69.64, 45.10, 42.94, 30.83, 26.35, 17.23, 16.62, 8.65 .
4.1.3.14. 5-(3-(4-(3,3-Dimethyl-2-oxobutoxy)-3-methylphenyl)pen-tan-3-yl)-1-ethyl-N-methyl-N-phenyl-1H-pyrrole-2carboxamide ($\mathbf{4 n}$). In the same method as $\mathbf{4 b}, \mathbf{4 n}$ was prepared from 3 and monomethylaniline. Yellow oil, $0.41 \mathrm{~g}, 68 \%$ yield. HRMS, ESI ${ }^{+}$, m / z : calcd for $\mathrm{C}_{32} \mathrm{H}_{42} \mathrm{~N}_{2} \mathrm{O}_{3}(\mathrm{M}+\mathrm{H})^{+} 503.3268$ found 503.3258 . ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 7.26(3 \mathrm{H}, \mathrm{m}), 7.15(1 \mathrm{H}, \mathrm{d}, J=7.2 \mathrm{~Hz}), 7.05$ $(1 \mathrm{H}, \mathrm{s}), 7.03(1 \mathrm{H}, \mathrm{s}), 6.81(1 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}), 6.73(1 \mathrm{H}, \mathrm{d}, J=1.8 \mathrm{~Hz})$, $6.41(1 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}), 6.38(1 \mathrm{H}, \mathrm{d}, J=1.8 \mathrm{~Hz}), 4.82(2 \mathrm{H}, \mathrm{s}), 4.23(2 \mathrm{H}$, $\mathrm{q}, J=7.2 \mathrm{~Hz}), 3.40(3 \mathrm{H}, \mathrm{s}), 2.21(3 \mathrm{H}, \mathrm{s}), 1.68(4 \mathrm{H}, \mathrm{m}), 1.42(3 \mathrm{H}, \mathrm{t}$, $J=7.2 \mathrm{~Hz}), 1.26(9 \mathrm{H}, \mathrm{s}), 0.43(6 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR (75 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta: 210.05,163.78,153.91,146.01,140.67,130.29,128.93$, $126.68,126.19,125.68,122.80,116.50,109.98,69.67,44.76,43.30$, $37.80,30.50,26.37,17.40,16.65,8.47$.
4.1.3.15. N,N-Bis(2-Cyanoethyl)-5-(3-(4-(3,3-dimethyl-2-oxobutoxy)-3-methylphenyl)-pentan-3-yl)-1-ethyl-1H-pyrrole-2carboxamide (40). In the same method as $\mathbf{4 b}, \mathbf{4 0}$ was prepared from 3 and 3.3'-iminodipropionitrile. White oil, $0.45 \mathrm{~g}, 72 \%$ yield. HRMS, $\mathrm{ESI}^{+}, m / z$: calcd for $\mathrm{C}_{31} \mathrm{H}_{42} \mathrm{~N}_{4} \mathrm{O}_{3}(\mathrm{M}+\mathrm{H})^{+} 519.3330$ found 519.3329. ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 7.01(1 \mathrm{H}, \mathrm{s}), 6.96(1 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz})$, $6.59(1 \mathrm{H}, \mathrm{d}, J=1.8 \mathrm{~Hz}), 6.51(1 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}), 6.00(1 \mathrm{H}, \mathrm{d}$, $J=1.8 \mathrm{~Hz}), 4.85(2 \mathrm{H}, \mathrm{s}), 4.06(2 \mathrm{H}, \mathrm{q}, J=7.2 \mathrm{~Hz}), 3.80(2 \mathrm{H}, \mathrm{t}$, $J=6.6 \mathrm{~Hz}), 2.64(2 \mathrm{H}, \mathrm{d}, J=6.6 \mathrm{~Hz}), 2.20(3 \mathrm{H}, \mathrm{s}), 1.91(4 \mathrm{H}, \mathrm{q}$, $J=6.9 \mathrm{~Hz}), 1.35(3 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}), 1.23(9 \mathrm{H}, \mathrm{s}), 0.65(6 \mathrm{H}, \mathrm{t}, J=6.9 \mathrm{~Hz})$. ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 217.12,165.32,154.13,140.37,131.46$, $130.33,125.85,123.65,122.34,117.56,112.39,110.31,69.51,45.07$, 44.89, 43.06, 30.52, 26.64, 26.34, 17.20, 17.08, 16.65, 8.61.
4.1.3.16. But-3-yn-2-yl 5-(3-(4-(3,3-dimethyl-2-oxobutoxy)-3-methylphenyl)pentan-3-yl)-1-ethyl-1H-pyrrole-2-carboxylate (4p).
To a solution of compound $3(0.50 \mathrm{~g}, 1.2 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{Cl}(10 \mathrm{~mL})$ was added 4-dimethylaminopyridine ($0.03 \mathrm{~g}, 0.24 \mathrm{mmol}$). After stirring at $0{ }^{\circ} \mathrm{C}$ for $0.5 \mathrm{~h}, \operatorname{EDCl}(0.25 \mathrm{~g}, 1.3 \mathrm{mmol})$ and but-3-yn-2-ol ($0.09 \mathrm{~g}, 1.3 \mathrm{mmol}$) were added. The reaction mixture was stirred at $60^{\circ} \mathrm{C}$ overnight and poured into $\mathrm{H}_{2} \mathrm{O}$. The solution was extracted with ethyl acetate $(3 \times 10 \mathrm{~mL})$ and the organic layer was washed with brine, then dried over MgSO_{4} and filtered. The ethyl acetate extracts were concentrated. The oil was purified by column chromatography with petroleumether/ethyl acetate ($25 / 1, \mathrm{v} / \mathrm{v}$) to give compound 4 p as white oil ($0.46 \mathrm{~g}, 83 \%$ yield). HRMS, $\mathrm{ESI}^{+}, \mathrm{m} / \mathrm{z}$: calcd for $\mathrm{C}_{29} \mathrm{H}_{39} \mathrm{NO}_{4}(\mathrm{M}+\mathrm{H})^{+} 466.2952$ found 466.2955. ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 7.01(1 \mathrm{H}, \mathrm{s}), 6.98(1 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}), 6.76(1 \mathrm{H}, \mathrm{d}$, $J=2.1 \mathrm{~Hz}), 6.59(1 \mathrm{H}, \mathrm{d}, J=2.1 \mathrm{~Hz}), 6.53(1 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}), 5.57(1 \mathrm{H}$, $\mathrm{m}), 4.86(2 \mathrm{H}, \mathrm{s}), 4.29(2 \mathrm{H}, \mathrm{q}, J=7.2 \mathrm{~Hz}), 3.72(1 \mathrm{H}, \mathrm{m}), 2.28(3 \mathrm{H}, \mathrm{s})$, $1.95(4 \mathrm{H}, \mathrm{q}, J=6.9 \mathrm{~Hz}), 1.59(3 \mathrm{H}, \mathrm{d}, J=6.9 \mathrm{~Hz}), 1.37(3 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz})$, 1.25 (9H, s), $0.66(6 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.9 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ : 210.06, 159.85, 154.10, 140.53, 131.90, 130.43, 127.11, 125.96, 125.77, $119.99,118.03,110.21,82.78,72.57,69.62,59.16,44.88,44.02,30.36$, 26.36, 26.07, 21.42, 17.04, 16.68, 8.53.
4.1.3.17. But-3-yn-1-yl 5-(3-(4-(3,3-dimethyl-2-oxobutoxy)-3-methylphenyl)pentan-3-yl)-1-ethyl-1H-pyrrole-2-carboxylate (4q). In the same method as $\mathbf{4 p}, \mathbf{4 q}$ was prepared from 3 and 3-butyn-1ol. White oil, $0.36 \mathrm{~g}, 78 \%$ yield. HRMS, $\mathrm{ESI}^{+}, \mathrm{m} / \mathrm{z}$: calcd for $\mathrm{C}_{29} \mathrm{H}_{39} \mathrm{NO}_{4}(\mathrm{M}+\mathrm{H})^{+} 466.2952$ found 466.2953 . ${ }^{1} \mathrm{H}$ NMR (300 MHz ,
$\left.\mathrm{CDCl}_{3}\right) \delta: 7.02(1 \mathrm{H}, \mathrm{s}), 6.98(1 \mathrm{H}, \mathrm{d}, J=7.8 \mathrm{~Hz}), 6.73(1 \mathrm{H}, \mathrm{d}, J=1.8 \mathrm{~Hz})$, $6.58(1 \mathrm{H}, \mathrm{d}, J=1.8 \mathrm{~Hz}), 6.51(1 \mathrm{H}, \mathrm{d}, J=7.8 \mathrm{~Hz}), 4.84(2 \mathrm{H}, \mathrm{s}), 4.30(4 \mathrm{H}$, $\mathrm{m}), 3.76(1 \mathrm{H}, \mathrm{s}), 2.60(2 \mathrm{H}, \mathrm{m}), 2.26(3 \mathrm{H}, \mathrm{s}) .1 .94(4 \mathrm{H}, \mathrm{q}, J=7.2 \mathrm{~Hz})$, $1.36(3 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}) 1.25(9 \mathrm{H}, \mathrm{s}), 0.65(6 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 210.31,162.32,154.09,140.49,131.85,130.44$, 126.57, 125.95, 125.76, 117.88, 117.49, 110.17, 80.29, 69.85, 69.60, $61.44,50.80,44.90,44.01,30.42,26.67,26.36,26.21,19.18,17.07$, 16.68, 14.45, 8.55.
4.1.3.18. 4-Ethoxy-4-oxobutan-2-yl 5-(3-(4-(3,3-dimethyl-2-oxobutoxy)-3-methylphenyl)pentan-3-yl)-1-ethyl-1H-pyrrole-2carboxylate ($\mathbf{4 r}$). In the same method as $\mathbf{4 p}, \mathbf{4 r}$ was prepared from 3 and Ethyl 3-hydroxybutyrate. White oil, $0.43 \mathrm{~g}, 81 \%$ yield. HRMS, $\mathrm{ESI}^{+}, \mathrm{m} / \mathrm{z}$: calcd for $\mathrm{C}_{31} \mathrm{H}_{45} \mathrm{NO}_{6}(\mathrm{M}+\mathrm{H})^{+} 528.3320$ found 528.3321. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 7.01(1 \mathrm{H}, \mathrm{s}), 6.96(1 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz})$, $6.64(1 \mathrm{H}, \mathrm{d}, J=1.8 \mathrm{~Hz}), 6.55(1 \mathrm{H}, \mathrm{d}, J=1.8 \mathrm{~Hz}), 6.50(1 \mathrm{H}, \mathrm{d}$, $J=8.4 \mathrm{~Hz}), 5.37(1 \mathrm{H}, \mathrm{q}, J=6.6 \mathrm{~Hz}), 4.84(2 \mathrm{H}, \mathrm{s}), 4.26(2 \mathrm{H}, \mathrm{q}$, $J=7.2 \mathrm{~Hz}), 4.10(2 \mathrm{H}, \mathrm{q}, J=7.2 \mathrm{~Hz}), 2.65(2 \mathrm{H}, \mathrm{m}), 2.25(3 \mathrm{H}, \mathrm{s}), 1.92$ ($4 \mathrm{H} . \mathrm{q}, J=7.3 \mathrm{~Hz}$), $1.32(6 \mathrm{H}, \mathrm{m}), 1.25(9 \mathrm{H}, \mathrm{s}), 1.19(3 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz})$, $0.64(6 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 210.05,170.50$, 160.31, 154.07, 140.56, 231.64, 130.44, 126.66, 125.91, 125.76, 120.60, 117.52, 110.14, 64.24, 60.53, 42.73.41.23, 30.38, 26.36, 26.06, 20.15, 17.06, 16.66, 14.12, 8.52.
4.1.3.19. Methyl (1-ethyl-5-(3-(4-(2-hydroxy-3,3-dimethylbutoxy)-3-methylphenyl)pentan-3-yl)-1H-pyrrole-2-carbonyl)-Lalloisoleucinate (5a). To a solution of compound $\mathbf{4 a}$ (0.15 g , 0.28 mmol) in $\mathrm{CH}_{3} \mathrm{OH}(10 \mathrm{~mL})$ was added $\mathrm{NaBH}_{4}(0.05 \mathrm{~g}$, 1.40 mmol). The reaction mixture was stirred at room temperature for 2.0 h , then $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$ was added slowly. The solution was extracted with ethyl acetate ($3 \times 10 \mathrm{~mL}$) and the organic layer was washed with brine, then dried over MgSO_{4} and filtered. The ethyl acetate extracts were concentrated. The oil was purified by column chromatography with dichloromethane/methanol ($16 / 1, \mathrm{v} / \mathrm{v}$) to give compound 5 a as white oil ($0.14 \mathrm{~g}, 92 \%$ yield). $\mathrm{HRMS}, \mathrm{ESI}^{+}, m / z$: calcd for $\mathrm{C}_{32} \mathrm{H}_{50} \mathrm{~N}_{2} \mathrm{O}_{5}(\mathrm{M}+\mathrm{H})^{+} 543.3792$ found 543.3794 . ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 7.03(1 \mathrm{H}, \mathrm{d}, J=9.0 \mathrm{~Hz}), 7.02(1 \mathrm{H}, \mathrm{s}), 6.73(1 \mathrm{H}, \mathrm{d}$, $J=9.0 \mathrm{~Hz}), 6.55(1 \mathrm{H}, \mathrm{d}, J=1.5 \mathrm{~Hz}), 6.28(1 \mathrm{H}, \mathrm{d}, J=1.5 \mathrm{~Hz}), 4.63(1 \mathrm{H}$, $\mathrm{m}), 4.28(2 \mathrm{H}, \mathrm{q}, J=7.2 \mathrm{~Hz}), 4.08(1 \mathrm{H}, \mathrm{m}), 3.85(1 \mathrm{H}, \mathrm{m}), 3.78(1 \mathrm{H}, \mathrm{m})$, $3.73(3 \mathrm{H}, \mathrm{s}), 2.26(3 \mathrm{H}, \mathrm{s}), 1.93(6 \mathrm{H}, \mathrm{m}), 1.48(1 \mathrm{H}, \mathrm{m}), 1.34(3 \mathrm{H}, \mathrm{t}$, $\mathrm{J}=7.2 \mathrm{~Hz}), 1.12(9 \mathrm{H}, \mathrm{s}), 0.91(6 \mathrm{H}, \mathrm{m}), 0.65(6 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 172.33,161.58,154.43,140.34,131.18,125.95$, 125.47, 125.02, 111.53, 110.16, 69.23, 52.02, 44.94, 43.73, 38.23, 33.57, 30.36, 26.07, 25.41, 17.20, 15.48, 11.58, 8.55.
4.1.3.20. Ethyl N-(1-ethyl-5-(3-(4-(2-hydroxy-3,3-dimethylbutoxy)-3-methylphenyl)pentan-3-yl)-1H-pyrrole-2-carbonyl)-Nmethylglycinate ($\mathbf{5 b}$). In the same method as $\mathbf{5 a}, \mathbf{5 b}$ was prepared from $\mathbf{4 b}$. White oil, $0.14 \mathrm{~g}, 93 \%$ yield. HRMS, ESI ${ }^{+}, m / z$: calcd for $\mathrm{C}_{30} \mathrm{H}_{46} \mathrm{~N}_{2} \mathrm{O}_{5}(\mathrm{M}+\mathrm{H})^{+} 515.3323$ found $515.3332 .{ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta: 7.02(1 \mathrm{H}, \mathrm{d}, J=9.0 \mathrm{~Hz}), 7.01(1 \mathrm{H}, \mathrm{s}), 6.69(1 \mathrm{H}, \mathrm{d}, J=9.0 \mathrm{~Hz})$, $6.51(1 \mathrm{H}, \mathrm{d}, J=1.8 \mathrm{~Hz}), 6.06(1 \mathrm{H}, \mathrm{d}, J=1.8 \mathrm{~Hz}), 4.11(5 \mathrm{H}, \mathrm{m}), 3.85(1 \mathrm{H}$, $\mathrm{m}), 3.69(3 \mathrm{H}, \mathrm{m}), 3.15(3 \mathrm{H}, \mathrm{s}), 2.10(3 \mathrm{H}, \mathrm{s}), 1.92(4 \mathrm{H}, \mathrm{q}, J=9.0 \mathrm{~Hz})$, $1.23(6 \mathrm{H}, \mathrm{m}), 1.01(9 \mathrm{H}, \mathrm{s}), 0.65(6 \mathrm{H}, \mathrm{t}, J=9.0 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR (75 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta: 162.03,154.68,140.34,130.46,125.98,125.32,123.08$, $110.08,69.25,52.06,43.08,30.81,26.06,17.09,16.58,8.63$.
4.1.3.21. N-(2-(Diethylamino)ethyl)-1-ethyl-5-(3-(4-(2-hydroxy-3,3-dimethylbutoxy)-3-methylphenyl)pentan-3-yl)-1H-pyrrole-2carboxamide ($\mathbf{5 c}$). In the same method as $\mathbf{5 a}, \mathbf{5 c}$ was prepared from 4 c .White oil, $0.13 \mathrm{~g}, 87 \%$ yield. HRMS, $\mathrm{ESI}^{+}, \mathrm{m} / \mathrm{z}$: calcd for $\mathrm{C}_{31} \mathrm{H}_{51} \mathrm{~N}_{3} \mathrm{O}_{3}(\mathrm{M}+\mathrm{H})^{+} 514.4003$ found $514.4004{ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta: 6.91(1 \mathrm{H}, \mathrm{s}), 6.85(1 \mathrm{H}, \mathrm{d}, J=7.2 \mathrm{~Hz}), 6.42(1 \mathrm{H}, \mathrm{d}, J=1.8 \mathrm{~Hz})$, $6.38(1 \mathrm{H}, \mathrm{d}, J=7.2 \mathrm{~Hz}), 6.21(1 \mathrm{H}, \mathrm{d}, J=1.8 \mathrm{~Hz}), 4.27(2 \mathrm{H}, \mathrm{q}$, $J=6.9 \mathrm{~Hz}), 4.00(1 \mathrm{H}, \mathrm{m}), 3.75(1 \mathrm{H}, \mathrm{m}), 3.63(1 \mathrm{H}, \mathrm{m}), 3.31(2 \mathrm{H}, \mathrm{m})$,
$2.34(6 \mathrm{H}, \mathrm{m}), 2.10(3 \mathrm{H}, \mathrm{s}), 1.82(4 \mathrm{H}, \mathrm{q}, J=7.3 \mathrm{~Hz}), 1.57(2 \mathrm{H}, \mathrm{m}), 1.18$ $(2 \mathrm{H}, \mathrm{t}, J=6.9 \mathrm{~Hz}), 1.10(6 \mathrm{H}, \mathrm{m}), 0.93(9 \mathrm{H}, \mathrm{s}), 0.57(6 \mathrm{H}, \mathrm{t}, J=7.3 \mathrm{~Hz})$. ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 160.72,152.32,142.45,130.37,125.92$, $123.82,111.38,110.12,69.27,53.09,46.82,43.58,40.17,30.29,26.05$, 25.07, 17.28, 16.60, 11.44, 8.53.
4.1.3.22. N-(2-(Dimethylamino)ethyl)-1-ethyl-5-(3-(4-(2-hydroxy-3,3-dimethylbutoxy)-3-methylphenyl)pentan-3-yl)-1H-pyrrole-2carboxamide ($\mathbf{5 d}$). In the same method as $\mathbf{5 a}, \mathbf{5 d}$ was prepared from 4d. White oil, $0.14 \mathrm{~g}, 93 \%$ yield. HRMS, $\mathrm{ESI}^{+}, \mathrm{m} / \mathrm{z}$: calcd for $\mathrm{C}_{29} \mathrm{H}_{47} \mathrm{~N}_{3} \mathrm{O}_{3}(\mathrm{M}+\mathrm{H})^{+} 486.3690$ found $486.3689 .{ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta: 7.24(1 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}), 7.23(1 \mathrm{H}, \mathrm{s}), 6.73(1 \mathrm{H}, \mathrm{d}, J=8.6 \mathrm{~Hz})$, $6.54(1 \mathrm{H} \mathrm{s}), 6.27(1 \mathrm{H}, \mathrm{s}), 4.33(2 \mathrm{H}, \mathrm{q}, J=6.9 \mathrm{~Hz}), 4.10(1 \mathrm{H}, \mathrm{m}), 3.98$ $(1 \mathrm{H}, \mathrm{m}), 3.86(1 \mathrm{H}, \mathrm{s}), 3.45(2 \mathrm{H}, \mathrm{t}, J=5.1 \mathrm{~Hz}), 2.51(1 \mathrm{H}, \mathrm{t}, J=5.1 \mathrm{~Hz})$, $2.28(6 \mathrm{H}, \mathrm{s}), 2.21(3 \mathrm{H}, \mathrm{s}), 1.93(4 \mathrm{H}, \mathrm{q}, J=6.9 \mathrm{~Hz}), 1.37(3 \mathrm{H}, \mathrm{t}$, $J=6.9 \mathrm{~Hz}), 1.02(9 \mathrm{H}, \mathrm{s}), 0.66(6 \mathrm{H}, \mathrm{t}, J=6.9 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR (75 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta: 162.21,154.37,140.33,131.04,130.34,125.90,125.37$, $124.51,124.05,111.82,110.13,69.30,52.01,47.19,44.92,43.61,36.27$, 33.58, 30.46, 26.06, 17.25, 16.61, 8.56.
4.1.3.23. N-(3-(Dimethylamino)propyl)-1-ethyl-5-(3-(4-(2-hydroxy-3,3-dimethylbutoxy)-3-methylphenyl)pentan-3-yl)-1H-pyrrole-2carboxamide (5e). In the same method as $\mathbf{5 a}, \mathbf{5 e}$ was prepared from 4e. White solid, $0.13 \mathrm{~g}, 88 \%$ yield. HRMS, ESI ${ }^{+}$, m / z : calcd for $\mathrm{C}_{30} \mathrm{H}_{49} \mathrm{~N}_{3} \mathrm{O}_{3}(\mathrm{M}+\mathrm{H})^{+} 500.3847$ found $500.3851 .{ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta: 7.05(1 \mathrm{H}, \mathrm{d}, J=8.1 \mathrm{~Hz}), 7.04(1 \mathrm{H}, \mathrm{s}), 6.72(1 \mathrm{H}, \mathrm{d}, J=8.1 \mathrm{~Hz})$, $6.53(1 \mathrm{H}, \mathrm{d}, J=1.8 \mathrm{~Hz}), 6.11(1 \mathrm{H}, \mathrm{d}, J=1.8 \mathrm{~Hz}), 4.35(2 \mathrm{H}, \mathrm{q}$, $J=6.9 \mathrm{~Hz}), 4.10(1 \mathrm{H}, \mathrm{m}), 3.86(1 \mathrm{H}, \mathrm{m}), 3.71(1 \mathrm{H}, \mathrm{m}), 3.41(2 \mathrm{H}, \mathrm{t}$, $J=6.3 \mathrm{~Hz}), 2.42(2 \mathrm{H}, \mathrm{t}, J=6.3 \mathrm{~Hz}), 2.16(9 \mathrm{H}, \mathrm{m}), 1.93(4 \mathrm{H}, \mathrm{q}$, $J=7.2 \mathrm{~Hz}), 1.72(2 \mathrm{H}, \mathrm{m}), 1.38(3 \mathrm{H}, \mathrm{t}, J=6.9 \mathrm{~Hz}), 1.02(9 \mathrm{H}, \mathrm{s}), 0.67(6 \mathrm{H}$, $\mathrm{t}, J=7.2 \mathrm{~Hz}$). ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 162.05,154.38,140.46$, 130.92, 130.38, 125.94, 125.37, 123.95, 111.29, 110.13, 69.28, 58.86, 44.93, 43.59, 39.25, 33.58, 26.41, 25.79, 17.30, 16.65, 1.02.
4.1.3.24. N-(3-(Diethylamino)propyl)-1-ethyl-5-(3-(4-(2-hydroxy-3,3-dimethylbutoxy)-3-methylphenyl)pentan-3-yl)-1H-pyrrole-2carboxamide ($\mathbf{5 f}$). In the same method as $\mathbf{5 a}, \mathbf{5 f}$ was prepared from 4f. White oil, $0.13 \mathrm{~g}, 85 \%$ yield. HRMS, $\mathrm{ESI}^{+}, \mathrm{m} / \mathrm{z}$: calcd for $\mathrm{C}_{32} \mathrm{H}_{53} \mathrm{~N}_{3} \mathrm{O}_{3}(\mathrm{M}+\mathrm{H})^{+} 528.4160$ found $528.4163 .{ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta: 7.02(1 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}), 7.01(1 \mathrm{H}, \mathrm{s}), 6.69(1 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz})$, $6.57(1 \mathrm{H}, \mathrm{d}, J=2.1 \mathrm{~Hz}), 6.50(1 \mathrm{H}, \mathrm{d}, J=2.1 \mathrm{~Hz}), 4.31(2 \mathrm{H}, \mathrm{q}$, $J=6.9 \mathrm{~Hz}), 4.08(1 \mathrm{H}, \mathrm{m}), 3.85(1 \mathrm{H}, \mathrm{m}), 3.69(1 \mathrm{H}, \mathrm{m}), 3.46(2 \mathrm{H}, \mathrm{t}$, $J=6.9 \mathrm{~Hz}), 2.72(6 \mathrm{H}, \mathrm{m}), 2.21(3 \mathrm{H}, \mathrm{s}), 1.91(4 \mathrm{H}, \mathrm{q}, J=7.2 \mathrm{~Hz}), 1.57$ $(2 \mathrm{H}, \mathrm{m}), 1.35(3 \mathrm{H}, \mathrm{t}, J=6.9 \mathrm{~Hz}), 1.01(9 \mathrm{H}, \mathrm{s}), 0.85(6 \mathrm{H}, \mathrm{t}, J=6.6 \mathrm{~Hz})$, $0.64(6 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 162.19,154.36$, $140.33,131.03,130.34,125.89,125.36,124.50,124.05,111.77,110.09$, 69.24, 51.96, 47.14, 44.91, 43.63, 36.31, 33.58, 30.44, 26.07, 17.27, 16.64, 11.07, 8.57.
4.1.3.25. 1-Ethyl-5-(3-(4-(2-hydroxy-3,3-dimethylbutoxy)-3-methylphenyl)pentan-3-yl)-N-(prop-2-yn-1-yl)-1H-pyrrole-2carboxamide ($\mathbf{5 g}$). In the same method as $\mathbf{5 a}, \mathbf{5 g}$ was prepared from $4 g$. White oil, $0.14 \mathrm{~g}, 93 \%$ yield. HRMS, ESI ${ }^{+}, \mathrm{m} / \mathrm{z}$: calcd for $\mathrm{C}_{28} \mathrm{H}_{40} \mathrm{~N}_{2} \mathrm{O}_{3}(\mathrm{M}+\mathrm{H})^{+} 453.3112$ found $453.3119 .{ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta: 7.02(1 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}), 7.01(1 \mathrm{H}, \mathrm{s}), 6.72(1 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz})$, $6.59(1 \mathrm{H}, \mathrm{d}, J=1.8 \mathrm{~Hz}), 6.20(1 \mathrm{H}, \mathrm{d}, J=1.8 \mathrm{~Hz}), 4.32(2 \mathrm{H}, \mathrm{q}$, $J=6.9 \mathrm{~Hz}), 4.11(3 \mathrm{H}, \mathrm{m}), 3.88(1 \mathrm{H}, \mathrm{m}), 3.71(1 \mathrm{H}, \mathrm{m}), 2.50(1 \mathrm{H}, \mathrm{s}), 2.21$ $(3 \mathrm{H}, \mathrm{s}), 1.92(2 \mathrm{H}, \mathrm{q}, J=7.2 \mathrm{~Hz}), 1.37(3 \mathrm{H}, \mathrm{t}, J=6.9 \mathrm{~Hz}), 1.01(9 \mathrm{H}, \mathrm{s})$, 0.65 ($6 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}$). ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 161.73,154.44$, 131.36, 130.35, 125.92, 125.48, 124.99, 123.40, 111.82, 110.11, 80.02, $77.30,77.04,76.62,71.36,69.23,44.94,43.78,33.58,30.26,28.84$, 26.07, 17.22, 16.67, 8.52.
4.1.3.26. N-(2,2-Dimethoxyethyl)-1-ethyl-5-(3-(4-(2-hydroxy-3,3-dimethylbutoxy)-3-methylphenyl)pentan-3-yl)-1H-pyrrole-2-
carboxamide ($\mathbf{5 h}$). In the same method as $\mathbf{5 a}, \mathbf{5 h}$ was prepared from 4h. White oil, $0.12 \mathrm{~g}, 83 \%$ yield. HRMS, ESI ${ }^{+}, \mathrm{m} / \mathrm{z}$: calcd for $\mathrm{C}_{29} \mathrm{H}_{46} \mathrm{~N}_{2} \mathrm{O}_{5}(\mathrm{M}+\mathrm{H})^{+} 503.3479$ found $503.3485 .{ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta: 7.04(1 \mathrm{H}, \mathrm{d}, J=8.1 \mathrm{~Hz}), 7.01(1 \mathrm{H}, \mathrm{s}), 6.72(1 \mathrm{H}, \mathrm{d}, J=8.1 \mathrm{~Hz})$, $6.56(1 \mathrm{H}, \mathrm{d}, J=1.8 \mathrm{~Hz}), 6.19(1 \mathrm{H}, \mathrm{d}, J=1.8 \mathrm{~Hz}), 4.93(1 \mathrm{H}, \mathrm{t}, J=5.7 \mathrm{~Hz})$, $4.32(2 \mathrm{H}, \mathrm{q}, J=7.2 \mathrm{~Hz}), 4.10(1 \mathrm{H}, \mathrm{m}), 3.86(1 \mathrm{H}, \mathrm{m}), 3.70(1 \mathrm{H}, \mathrm{m}), 3.47$ $(2 \mathrm{H}, \mathrm{d}, J=5.7 \mathrm{~Hz}), 3.41(6 \mathrm{H}, \mathrm{s}), 2.17(3 \mathrm{H}, \mathrm{s}), 1.93(4 \mathrm{H}, \mathrm{q}, J=7.5 \mathrm{~Hz})$, $1.34(3 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}), 1.01(9 \mathrm{H}, \mathrm{s}), 0.62(6 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 162.02,154.43,141.92,133.38,131.13,125.92$, $125.46,124.72,123.93,111.48,110.15,85.19,54.44,44.94,43.70$, $40.69,30.32,26.05,17.22,16.63,8.53$.
4.1.3.27. 1-Ethyl-5-(3-(4-(2-hydroxy-3,3-dimethylbutoxy)-3-methylphenyl)pentan-3-yl)-N-(3-morpholinopropyl)-1H-pyrrole-2carboxamide ($\mathbf{5 i}$). In the same method as $\mathbf{5 a}, \mathbf{5 i}$ was prepared from 4i. White oil, $0.13 \mathrm{~g}, 87 \%$ yield. HRMS, ESI ${ }^{+}, \mathrm{m} / \mathrm{z}$: calcd for $\mathrm{C}_{32} \mathrm{H}_{51} \mathrm{~N}_{3} \mathrm{O}_{4}(\mathrm{M}+\mathrm{H})^{+} 542.3952$ found $542.3955 .{ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta: 7.04(1 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}), 7.03(1 \mathrm{H}, \mathrm{s}), 6.72(1 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz})$, $6.60(1 \mathrm{H}, \mathrm{d}, J=1.5 \mathrm{~Hz}), 6.12(1 \mathrm{H}, \mathrm{d}, J=1.5 \mathrm{~Hz}), 4.35(2 \mathrm{H}, \mathrm{q}$, $J=7.2 \mathrm{~Hz}), 4.12(1 \mathrm{H}, \mathrm{m}), 3.87(1 \mathrm{H}, \mathrm{m}), 3.70(1 \mathrm{H}, \mathrm{m}), 3.51(6 \mathrm{H}, \mathrm{m})$, $2.46(6 \mathrm{H}, \mathrm{m}), 2.20(3 \mathrm{H}, \mathrm{s}), 1.93(4 \mathrm{H}, \mathrm{q}, J=7.2 \mathrm{~Hz}), 1.71(2 \mathrm{H}, \mathrm{m}), 1.16$ ($9 \mathrm{H}, \mathrm{s}$), $0.66\left(6 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}\right.$). ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 162.07$, $154.47,140.44,131.33,130.28,125.75,125.44,124.68,124.07,111.07$, $110.03,69.25,66.23,58.88,53.83,44.84,43.62,39.72,33.61,29.98$, 26.07, 24.43, 17.27, 16.66, 8.46.
4.1.3.28. N-(2-Bromoethyl)-1-ethyl-5-(3-(4-(2-hydroxy-3,3-dimethylbutoxy)-3-methylphenyl)pentan-3-yl)-1H-pyrrole-2carboxamide ($\mathbf{5 j}$). In the same method as $\mathbf{5 a}, \mathbf{5 j}$ was prepared from 4j. White oil, $0.13 \mathrm{~g}, 91 \%$ yield. HRMS, ESI ${ }^{+}, \mathrm{m} / \mathrm{z}$: calcd for $\mathrm{C}_{27} \mathrm{H}_{41} \mathrm{BrN}_{2} \mathrm{O}_{3} \quad(\mathrm{M}-\mathrm{Br}+\mathrm{H})^{+} \quad 441.3112$ found $441.3109 .{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 7.03(1 \mathrm{H}, \mathrm{d}, J=6.4 \mathrm{~Hz}), 7.02(1 \mathrm{H}, \mathrm{s}), 6.72(1 \mathrm{H}, \mathrm{d}$, $J=6.4 \mathrm{~Hz}), 6.54(1 \mathrm{H}, \mathrm{d}, J=2.4 \mathrm{~Hz}), 6.47(1 \mathrm{H}, \mathrm{d}, J=2.4 \mathrm{~Hz}), 4.31(2 \mathrm{H}$, $\mathrm{d}, J=7.2 \mathrm{~Hz}), 4.23(2 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}), 4.10(1 \mathrm{H}, \mathrm{m}), 3.88(2 \mathrm{H}, \mathrm{d}$, $J=8.7 \mathrm{~Hz}), 3.85(1 \mathrm{H}, \mathrm{m}), 2.17(3 \mathrm{H}, \mathrm{s}), 1.91(4 \mathrm{H}, \mathrm{q}, J=7.2 \mathrm{~Hz}), 1.35(3 \mathrm{H}$, $\mathrm{t}, J=7.2 \mathrm{~Hz}), 1.01(9 \mathrm{H}, \mathrm{s}), 0.63(6 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR (75 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta: 143.32,130.35,125.91,124.38,114.69,65.88,55.21,43.46$, 30.41, 26.05, 16.77, 8.57.
4.1.3.29. N-(2-Aminoethyl)-1-ethyl-5-(3-(4-(2-hydroxy-3,3-dimethylbutoxy)-3-methylphenyl)pentan-3-yl)-1H-pyrrole-2carboxamide ($\mathbf{5 k}$). In the same method as $\mathbf{5 a}, \mathbf{5 k}$ was prepared from 4k.White oil, $0.14 \mathrm{~g}, 92 \%$ yield. HRMS, $\mathrm{ESI}^{+}, \mathrm{m} / \mathrm{z}$: calcd for $\mathrm{C}_{27} \mathrm{H}_{43} \mathrm{~N}_{3} \mathrm{O}_{3}(\mathrm{M}+\mathrm{H})^{+} 458.3377$ found $458.3389 .{ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta: 7.03(1 \mathrm{H}, \mathrm{d}, J=7.5 \mathrm{~Hz}), 7.02(1 \mathrm{H}, \mathrm{s}), 6.78(1 \mathrm{H}, \mathrm{d}, J=7.5 \mathrm{~Hz})$, $6.56(1 \mathrm{H}, \mathrm{d}, J=1.8 \mathrm{~Hz}), 6.22(1 \mathrm{H}, \mathrm{d}, J=1.8 \mathrm{~Hz}), 4.32(2 \mathrm{H}, \mathrm{q}$, $J=7.2 \mathrm{~Hz}), 4.11(1 \mathrm{H}, \mathrm{m}), 3.86(1 \mathrm{H}, \mathrm{m}), 3.68(1 \mathrm{H}, \mathrm{m}), 3.36(2 \mathrm{H}, \mathrm{t}$, $J=5.7 \mathrm{~Hz}), 2.85(2 \mathrm{H}, \mathrm{t}, J=5.7 \mathrm{~Hz}), 2.16(3 \mathrm{H}, \mathrm{s}), 1.92(4 \mathrm{H}, \mathrm{q}$, $J=7.2 \mathrm{~Hz}), 1.36(3 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}), 1.00(9 \mathrm{H}, \mathrm{s}), 0.64(6 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz})$. ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 162.40,154.42,140.42,131.17,130.34$, 125.92, 125.43, 124.58, 111.44, 110.12, 69.29, 44.91, 43.71, 41.48, $33.61,30.24,26.07,17.25,16.65,8.53$.
4.1.3.30. N-(2-Cyanoethyl)-1-ethyl-5-(3-(4-(2-hydroxy-3,3-dimethylbutoxy)-3-methylphenyl)pentan-3-yl)-N-methyl-1H-pyr-role-2-carboxamide (5I). In the same method as $\mathbf{5 a}, \mathbf{5 1}$ was prepared from 41. White oil, $0.13 \mathrm{~g}, 87 \%$ yield. HRMS, ESI ${ }^{+}, m / z$: calcd for $\mathrm{C}_{29} \mathrm{H}_{43} \mathrm{~N}_{3} \mathrm{O}_{3}(\mathrm{M}+\mathrm{H})^{+} 482.3377$ found $482.3368 .{ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta: 7.02(1 \mathrm{H}, \mathrm{d}, J=9.0 \mathrm{~Hz}), 7.01(1 \mathrm{H}, \mathrm{s}), 6.63(1 \mathrm{H}, \mathrm{d}, J=9.0 \mathrm{~Hz})$, $6.46(1 \mathrm{H}, \mathrm{d}, J=1.8 \mathrm{~Hz}), 5.99(1 \mathrm{H}, \mathrm{d}, J=1.8 \mathrm{~Hz}), 4.04(3 \mathrm{H}, \mathrm{m}), 3.78$ $(1 \mathrm{H}, \mathrm{m}), 3.63(3 \mathrm{H}, \mathrm{m}), 3.17(3 \mathrm{H}, \mathrm{s}), 2.63(2 \mathrm{H}, \mathrm{t}, J=6.6 \mathrm{~Hz}), 2.11(3 \mathrm{H}, \mathrm{s})$, $1.84(2 \mathrm{H}, \mathrm{q}, J=7.5 \mathrm{~Hz}), 1.27(3 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}), 0.96(9 \mathrm{H}, \mathrm{s}), 0.58(6 \mathrm{H}$, $\mathrm{t}, J=7.5 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 160.02,140.21,130.68$, 130.41, 125.97, 125.36, 123.37, 113.69, 110.05, 69.20, 45.07, 43.14, 33.57, 30.73, 26.07, 17.21, 16.64, 16.28, 8.63.
4.1.3.31. N-Allyl-1-ethyl-5-(3-(4-(2-hydroxy-3,3-dimethylbutoxy)-3-methylphenyl)pentan-3-yl)-N-methyl-1H-pyrrole-2carboxamide (5m). In the same method as $\mathbf{5 a}, \mathbf{5 m}$ was prepared from $\mathbf{4 m}$. White oil, $0.14 \mathrm{~g}, 94 \%$ yield. HRMS, $\mathrm{ESI}^{+}, m / z$: calcd for $\mathrm{C}_{29} \mathrm{H}_{44} \mathrm{~N}_{2} \mathrm{O}_{3}(\mathrm{M}+\mathrm{H})^{+} 469.3425$ found 469.3415 . ${ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta: 7.03(1 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}), 7.02(1 \mathrm{H}, \mathrm{s}), 6.69(1 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz})$, $6.49(1 \mathrm{H}, \mathrm{d}, J=1.5 \mathrm{~Hz}), 5.78(1 \mathrm{H}, \mathrm{m}), 5.18(2 \mathrm{H}, \mathrm{m}), 4.10(5 \mathrm{H}, \mathrm{m}), 3.85$ $(1 \mathrm{H}, \mathrm{m}), 3.70(1 \mathrm{H}, \mathrm{m}), 3.02(3 \mathrm{H}, \mathrm{s}), 2.24(3 \mathrm{H}, \mathrm{s}), 1.90(4 \mathrm{H}, \mathrm{q}$, $J=7.5 \mathrm{~Hz}), 1.33(3 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}), 1.01(9 \mathrm{H}, \mathrm{s}), 0.65(6 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz})$. ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 162.31,154.32,140.39,133.33,130.48$, $130.23,125.97,125.28,122.70,117.14,112.74,110.01,69.20,45.07$, 42.96, 33.57, 30.84, 26.07, 17.26, 16.62, 8.66.
4.1.3.32. 1-Ethyl-5-(3-(4-(2-hydroxy-3,3-dimethylbutoxy)-3-methylphenyl)pentan-3-yl)-N-methyl-N-phenyl-1H-pyrrole-2carboxamide ($\mathbf{5 n}$). In the same method as $\mathbf{5 a}, \mathbf{5 n}$ was prepared from 4n. White oil, $0.13 \mathrm{~g}, 88 \%$ yield. HRMS, $\mathrm{ESI}^{+}, \mathrm{m} / \mathrm{z}$: calcd for $\mathrm{C}_{34} \mathrm{H}_{44} \mathrm{~N}_{2} \mathrm{O}_{3}(\mathrm{M}+\mathrm{H})^{+} 505.3425$ found $505.3415 .{ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta: 7.25(3 \mathrm{H}, \mathrm{m}), 7.05(2 \mathrm{H}, \mathrm{m}), 6.82(2 \mathrm{H}, \mathrm{m}), 6.62(1 \mathrm{H}, \mathrm{d}$, $J=8.4 \mathrm{~Hz}), 6.36(1 \mathrm{H}, \mathrm{d}, J=1.8 \mathrm{~Hz}), 4.25(2 \mathrm{H}, \mathrm{q}, J=7.2 \mathrm{~Hz}), 4.09(1 \mathrm{H}$, m), $3.85(1 \mathrm{H}, \mathrm{m}), 3.71(1 \mathrm{H}, \mathrm{m}), 3.42(3 \mathrm{H}, \mathrm{s}), 2.16(3 \mathrm{H}, \mathrm{s}), 1.66(4 \mathrm{H}, \mathrm{q}$, $J=7.2 \mathrm{~Hz}), 1.41(3 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}), 1.03(9 \mathrm{H}, \mathrm{s}), 0.46(6 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz})$. ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 163.79,154.21,146.04,140.34,130.16$, $130.04,128.93,126.68,126.15,125.80,125.16,123.85,122.79,116.48$, $110.00,69.25,44.75,43.30,37.82,33.58,30.51,26.07,17.14,16.61$, 8.48 .
4.1.3.33. N,N-bis(2-Cyanoethyl)-1-ethyl-5-(3-(4-(2-hydroxy-3,3-dimethylbutoxy)-3-methylphenyl)pentan-3-yl)-1H-pyrrole-2carboxamide (50). In the same method as $\mathbf{5 a}, \mathbf{5 0}$ was prepared from 4o. White oil, $0.13 \mathrm{~g}, 88 \%$ yield. HRMS, ESI ${ }^{+}, \mathrm{m} / \mathrm{z}$: calcd for $\mathrm{C}_{31} \mathrm{H}_{44} \mathrm{~N}_{4} \mathrm{O}_{3}(\mathrm{M}+\mathrm{H})^{+} 521.3486$ found $521.3484 .{ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta: 6.94(1 \mathrm{H}, \mathrm{d}, J=9.0 \mathrm{~Hz}), 6.93(1 \mathrm{H}, \mathrm{s}), 6.64(2 \mathrm{H}, \mathrm{d}, J=9.0 \mathrm{~Hz})$, $6.52(1 \mathrm{H}, \mathrm{d}, J=1.5 \mathrm{~Hz}), 5.95(1 \mathrm{H}, \mathrm{d}, J=1.5 \mathrm{~Hz}), 4.00(3 \mathrm{H}, \mathrm{m}), 3.78$ $(5 \mathrm{H}, \mathrm{m}), 3.62(1 \mathrm{H}, \mathrm{m}), 2.58(4 \mathrm{H}, \mathrm{t}, J=6.9 \mathrm{~Hz}), 2.12(3 \mathrm{H}, \mathrm{s}), 1.85(4 \mathrm{H}, \mathrm{q}$, $J=7.5 \mathrm{~Hz}), 1.27(3 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}), 0.93(9 \mathrm{H}, \mathrm{s}), 0.59(6 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz})$. ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 165.07,154.52,139.95,131.53,130.24$, 125.90, 125.50, 123.73, 123.23, 122.30, 117.52, 112.38, 110.22, 69.32, $45.07,43.08,33.60,30.57,26.07,17.24,8.62$.
4.1.3.34. But-3-yn-2-yl 1-ethyl-5-(3-(4-(2-hydroxy-3,3-dimethylbutoxy)-3-methylphenyl)pentan-3-yl)-1H-pyrrole-2carboxylate ($\mathbf{5 p}$). In the same method as $\mathbf{5 a}, \mathbf{5 p}$ was prepared from $\mathbf{4 p}$. White oil, $0.14 \mathrm{~g}, 95 \%$ yield. HRMS, ESI ${ }^{+}, \mathrm{m} / \mathrm{z}$: calcd for $\mathrm{C}_{29} \mathrm{H}_{41} \mathrm{NO}_{4}(\mathrm{M}+\mathrm{H})^{+} 468.3108$ found $468.3108 .{ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta: 7.04(1 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}), 7.03(1 \mathrm{H}, \mathrm{s}), 6.77(1 \mathrm{H}, \mathrm{d}, J=2.4 \mathrm{~Hz})$, $6.74(1 \mathrm{H}, \mathrm{d}, J=9.0 \mathrm{~Hz}), 6.50(1 \mathrm{H}, \mathrm{d}, J=2.1 \mathrm{~Hz}), 6.57(1 \mathrm{H}, \mathrm{m}), 4.23$ $(2 \mathrm{H}, \mathrm{q}, J=7.2 \mathrm{~Hz}), 4.13(1 \mathrm{H}, \mathrm{m}), 3.92(1 \mathrm{H}, \mathrm{m}), 3.75(1 \mathrm{H}, \mathrm{m}), 2.46(1 \mathrm{H}$, $\mathrm{m}), 2.22(2 \mathrm{H}, \mathrm{s}), 1.97(4 \mathrm{H}, \mathrm{q}, J=7.5 \mathrm{~Hz}), 1.59(3 \mathrm{H}, \mathrm{d}, J=6.6 \mathrm{~Hz}), 1.16$ $(9 \mathrm{H}, \mathrm{s}), 0.67(6 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 162.13$, 154.23, 140.21, 131.94, 130.30, 127.06, 125.90, 125.48, 118.01, 110.17, 82.78, 69.24, 59.16, 44.89, 44.04, 33.57, 26.07, 21.42, 17.05, 16.65, 8.53.
4.1.3.35. But-3-yn-1-yl 1-ethyl-5-(3-(4-(2-hydroxy-3,3-dimethylbutoxy)-3-methylphenyl)pentan-3-yl)-1H-pyrrole-2carboxylate ($\mathbf{5 q}$). In the same method as $\mathbf{5 a}, \mathbf{5 q}$ was prepared from 4q. White oil, $0.13 \mathrm{~g}, 87 \%$ yield. HRMS, ESI ${ }^{+}, m / z$: calcd for $\mathrm{C}_{29} \mathrm{H}_{41} \mathrm{NO}_{4}(\mathrm{M}+\mathrm{H})^{+} 468.3108$ found $468.3110 .{ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta: 7.03(1 \mathrm{H}, \mathrm{d}, J=7.5 \mathrm{~Hz}), 7.02(1 \mathrm{H}, \mathrm{s}), 6.74(1 \mathrm{H}, \mathrm{d}, J=1.8 \mathrm{~Hz})$, $6.70(1 \mathrm{H}, \mathrm{d}, J=7.5 \mathrm{~Hz}), 6.58(1 \mathrm{H}, \mathrm{d}, J=1.8 \mathrm{~Hz}), 4.24(4 \mathrm{H}, \mathrm{m}), 4.11$ $(1 \mathrm{H}, \mathrm{m}), 3.87(1 \mathrm{H}, \mathrm{m}), 3.71(1 \mathrm{H}, \mathrm{m}), 2.61(2 \mathrm{H}, \mathrm{m}), 2.20(3 \mathrm{H}, \mathrm{s}), 2.03$ $(1 \mathrm{H}, \mathrm{m}), 1.95(4 \mathrm{H}, \mathrm{q}, J=7.2 \mathrm{~Hz}), 1.36(3 \mathrm{H}, \mathrm{t}, J=6.9 \mathrm{~Hz}), 1.01(9 \mathrm{H}, \mathrm{s})$, 0.66 ($6 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}$). ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 160.69,154.42$, 140.17, 131.89, 130.31, 126.86, 125.89, 125.47, 120.21, 117.86, 110.16,
80.30, 69.85, 69.24, 61.45, 44.90, 44.02, 33.57, 30.43, 26.07, 19.18, 17.08, 16.65, 8.55.
4.1.3.36. 4-Hydroxybutan-2-yl 1-ethyl-5-(3-(4-(2-hydroxy-3,3-dimethylbutoxy)-3-methylphenyl)pentan-3-yl)-1H-pyrrole-2carboxylate ($\mathbf{5 r}$). In the same method as $\mathbf{5 a}, \mathbf{5 r}$ was prepared from 4r. White oil, $0.14 \mathrm{~g}, 95 \%$ yield. HRMS, $\mathrm{ESI}^{+}, \mathrm{m} / \mathrm{z}$: calcd for $\mathrm{C}_{29} \mathrm{H}_{45} \mathrm{NO}_{5}(\mathrm{M}+\mathrm{H})^{+} 488.3371$ found $488.3379 .{ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta: 7.03(1 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}), 7.02(1 \mathrm{H}, \mathrm{s}), 6.77(1 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz})$, $6.67(1 \mathrm{H}, \mathrm{d}, J=1.8 \mathrm{~Hz}), 6.57(1 \mathrm{H}, \mathrm{d}, J=1.8 \mathrm{~Hz}), 5.38(1 \mathrm{H}, \mathrm{m}), 4.27$ $(2 \mathrm{H}, \mathrm{q}, J=6.9 \mathrm{~Hz}), 4.11(2 \mathrm{H}, \mathrm{d}, J=6.6 \mathrm{~Hz}), 3.87(1 \mathrm{H}, \mathrm{m}), 3.72(1 \mathrm{H}, \mathrm{m})$, $3.36(1 \mathrm{H}, \mathrm{m}), 2.19(3 \mathrm{H} . \mathrm{s}), 1.96(4 \mathrm{H}, \mathrm{q}, J=7.5 \mathrm{~Hz}), 1.37(3 \mathrm{H}, \mathrm{t}$, $J=6.9 \mathrm{~Hz}), 1.30(3 \mathrm{H}, \mathrm{d}, J=7.2 \mathrm{~Hz}), 1.19(2 \mathrm{H}, \mathrm{m}), 1.02(9 \mathrm{H}, \mathrm{m}), 0.66$ $(6 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 160.31,154.44$, $140.22,131.68,130.30,126.61,125.91,125.46,117.55,110.23,69.32$, $66.75,60.51,51.64,44.92,43.94,41.23,33.59,30.45,26.06,17.04$, 14.41, 8.54.
4.1.3.37. (5-(3-(4-(3,3-dimethyl-2-oxobutoxy)-3-methylphenyl)pen-tan-3-yl)-1-ethyl-1H-pyrrole-2-carbonyl)-L-alloisoleucine ($\mathbf{6 a}$).
To a solution of compound $\mathbf{4 a}(0.36 \mathrm{~g}, 0.68 \mathrm{mmol})$ in THF (10 mL) and $\mathrm{H}_{2} \mathrm{O}(1.0 \mathrm{ml})$, LiOH. $\mathrm{H}_{2} \mathrm{O}(0.14 \mathrm{~g}, 3.40 \mathrm{mmol})$ was added. The reaction mixture was stirred at room temperature overnight, then $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$ was added slowly and the pH value was adjusted to about 3-4. The solution was extracted with ethyl acetate $(3 \times 10 \mathrm{~mL})$ and the organic layer was washed with brine, then dried over MgSO_{4} and filtered. The ethyl acetate extracts were concentrated. The oil was purified by column chromatography with dichloromethane/methanol (25/1, v/v) to give compound 6a as white oil ($0.28 \mathrm{~g}, 82 \%$ yield). HRMS, ESI ${ }^{+}, m / z$: calcd for $\mathrm{C}_{31} \mathrm{H}_{46} \mathrm{~N}_{2} \mathrm{O}_{5}$ $(\mathrm{M}+\mathrm{H})^{+} 527.3479$ found 527.3486. ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$: $7.00(1 \mathrm{H}, \mathrm{s}), 6.96(1 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}), 6.69(1 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}), 6.49(1 \mathrm{H}$, $\mathrm{d}, J=1.8 \mathrm{~Hz}), 6.34(1 \mathrm{H}, \mathrm{d}, J=1.8 \mathrm{~Hz}), 4.82(2 \mathrm{H}, \mathrm{s}), 4.08(3 \mathrm{H}, \mathrm{m}), 2.23$ (3H, s), $1.89(6 \mathrm{H}, \mathrm{m}), 1.44(1 \mathrm{H}, \mathrm{m}), 1.28(12 \mathrm{H}, \mathrm{m}), 0.82(6 \mathrm{H}, \mathrm{m}), 0.62$ $(6 \mathrm{H}, \mathrm{t}, J=6.3 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 210.3,174.7,162.4$, 155.4, 140.67, 131.07, 125.90, 124.87, 123.91, 111.78, 110.29, 59.4, 44.91, 43.60, 37.24, 26.08, 25.23, 16.61, 11.44, 8.56.
4.1.3.38. N -(5-(3-(4-(3,3-Dimethyl-2-oxobutoxy)-3-methylphenyl) pentan-3-yl)-1-ethyl-1H-pyrrole-2-carbonyl)-N-methylglycine (6b).
In the same method as $\mathbf{6 a}, \mathbf{6 b}$ was prepared from $\mathbf{4 b}$. White oil, $0.28 \mathrm{~g}, 85 \%$ yield. HRMS, $\mathrm{ESI}^{+}, \mathrm{m} / \mathrm{z}$: calcd for $\mathrm{C}_{28} \mathrm{H}_{44} \mathrm{~N}_{2} \mathrm{O}_{5}(\mathrm{M}+\mathrm{H})^{+}$ 485.3010 found $485.3010 .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 6.93(1 \mathrm{H}, \mathrm{s})$, $6.86(1 \mathrm{H}, \mathrm{d}, J=6.9 \mathrm{~Hz}), 6.58(1 \mathrm{H}, \mathrm{d}, J=6.9 \mathrm{~Hz}), 6.41(1 \mathrm{H}, \mathrm{s}), 6.08(1 \mathrm{H}$, s), $4.80(2 \mathrm{H}, \mathrm{s}), 3.83(4 \mathrm{H}, \mathrm{m}), 3.43(3 \mathrm{H}, \mathrm{s}), 2.21(3 \mathrm{H}, \mathrm{s}), 1.85(4 \mathrm{H}, \mathrm{q}$, $J=6.9 \mathrm{~Hz}), 1.24(12 \mathrm{H}, \mathrm{m}), 0.60(6 \mathrm{H}, \mathrm{t}, J=6.9 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR (75 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta: 210.32,173.13,162.31,153.99,143.36,130.50,125.73$, 110.13, 106.47, 69.58, 50.52, 45.03, 39.56, 30.78, 26.34, 17.08, 8.64.
4.1.3.39. (1-Ethyl-5-(3-(4-(2-hydroxy-3,3-dimethylbutoxy)-3-methylphenyl)pentan-3-yl)-1H-pyrrole-2-carbonyl)-Lalloisoleucine (7a). To a solution of compound $\mathbf{6 a}$ (0.15 g , 0.29 mmol) in $\mathrm{CH}_{3} \mathrm{OH}(10 \mathrm{~mL})$ was added $\mathrm{NaBH}_{4}(0.05 \mathrm{~g}$, 1.45 mmol). The reaction mixture was stirred at room temperature for 2.0 h , then $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$ was added slowly. The solution was extracted with ethyl acetate ($3 \times 10 \mathrm{~mL}$) and the organic layer was washed with brine, then dried over MgSO_{4} and filtered. The ethyl acetate extracts were concentrated. The oil was purified by column chromatography with dichloromethane/methanol (20/1, v/v) to give compound 7a as white oil ($0.14 \mathrm{~g}, 92 \%$ yield). $\mathrm{HRMS}, \mathrm{ESI}^{+}, \mathrm{m} / \mathrm{z}$: calcd for $\mathrm{C}_{31} \mathrm{H}_{48} \mathrm{~N}_{2} \mathrm{O}_{5}(\mathrm{M}+\mathrm{H})^{+} 529.3636$ found 529.3641. ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 7.00(1 \mathrm{H}, \mathrm{s}), 6.97(1 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}), 6.49(1 \mathrm{H}, \mathrm{d}$, $J=8.7 \mathrm{~Hz}), 6.41(1 \mathrm{H}, \mathrm{s}), 6.35(1 \mathrm{H}, \mathrm{s}), 4.82(2 \mathrm{H}, \mathrm{s}), 3.95(3 \mathrm{H}, \mathrm{m}), 2.23$ $(3 \mathrm{H}, \mathrm{s}), 1.95(6 \mathrm{H}, \mathrm{m}), 1.44(1 \mathrm{H}, \mathrm{m}), 1.23(12 \mathrm{H}, \mathrm{m}), 0.83(6 \mathrm{H}, \mathrm{m}), 0.61$ $(6 \mathrm{H}, \mathrm{t}, J=6.6 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 174.71,162.44,153.37$,
140.67, 131.07, 125.90, 124.87, 123.91, 111.78, 110.23, 69.64, 59.43, $44.36,43.60,37.24,30.45,26.08,25.23,16.61,15.80,11.41,8.56$.
4.1.3.40. N-(1-Ethyl-5-(3-(4-(2-hydroxy-3,3-dimethylbutoxy)-3-methylphenyl)pentan-3-yl)-1H-pyrrole-2-carbonyl)-Nmethylglycine ($\mathbf{7 b}$). In the same method as $\mathbf{7 a}, \mathbf{7 b}$ was prepared from 6b. White oil, $0.13 \mathrm{~g}, 87 \%$ yield. HRMS, ESI ${ }^{+}, m / z$: calcd for $\mathrm{C}_{28} \mathrm{H}_{42} \mathrm{~N}_{2} \mathrm{O}_{5}(\mathrm{M}+\mathrm{H})^{+} 487.3166$ found $487.3175 .{ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta: 7.02(1 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}), 6.99(1 \mathrm{H}, \mathrm{s}), 6.66(1 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz})$, $6.37(1 \mathrm{H}, \mathrm{s}), 6.03(1 \mathrm{H}, \mathrm{s}), 4.04(1 \mathrm{H}, \mathrm{m}), 3.91(1 \mathrm{H}, \mathrm{m}), 3.86(4 \mathrm{H}, \mathrm{m})$, $3.72(1 \mathrm{H}, \mathrm{m}), 3.04(3 \mathrm{H}, \mathrm{s}), 2.21(3 \mathrm{H}, \mathrm{s}), 1.87(4 \mathrm{H}, \mathrm{q}, J=6.9 \mathrm{~Hz}), 1.74$ $(3 \mathrm{H}, \mathrm{t}, J=7.3 \mathrm{~Hz}), 0.98(9 \mathrm{H}, \mathrm{s}), 0.61(6 \mathrm{H}, \mathrm{t}, J=6.9 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 173.12,163.23,154.39,140.30,130.36,125.33$, $123.35,45.08,33.60,30.74,26.07,16.95,8.64$.

4.1.4. General procedure for the synthesize of phenyl-pyrrolyl pentane derivatives ($\mathbf{8 a}-\mathbf{8 e}, \mathbf{9 a - 9 e}, 10 a-10 b, 11 a-11 b)$

4.1.4.1. 5-(3-(4-(3,3-dimethyl-2-oxobutoxy)-3-methylphenyl)pen-tan-3-yl)-1-ethyl-N-(4-(trifluoromethoxy)phenyl)-1H-pyrrole-2carboxamide ($\mathbf{8 a}$). In the same method as $\mathbf{4 a}, \mathbf{8 a}$ was prepared from 3 and 4 -(trifluoromethyl)aniline. White oil, $0.50 \mathrm{~g}, 75 \%$ yield. HRMS, $\mathrm{ESI}^{+}, m / z$: calcd for $\mathrm{C}_{32} \mathrm{H}_{39} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{4}(\mathrm{M}+\mathrm{H})^{+} 573.2935$ found $573.2935 .{ }^{1} \operatorname{H~NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 7.60(1 \mathrm{H}, \mathrm{s}), 7.57(1 \mathrm{H}, \mathrm{s}), 7.18$ $(1 \mathrm{H}, \mathrm{s}), 7.15(1 \mathrm{H}, \mathrm{s}), 7.02(1 \mathrm{H}, \mathrm{s}), 7.01(1 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}), 6.71(1 \mathrm{H}, \mathrm{d}$, $J=1.8 \mathrm{~Hz}), 6.52(1 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}), 6.38(1 \mathrm{H}, \mathrm{d}, J=1.8 \mathrm{~Hz}), 4.88(2 \mathrm{H}$, s), $4.38(2 \mathrm{H}, \mathrm{q}, J=7.2 \mathrm{~Hz}), 2.26(3 \mathrm{H}, \mathrm{s}), 1.94(4 \mathrm{H}, \mathrm{q}, J=7.2 \mathrm{~Hz}), 1.37$ $(3 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}), 1.27(9 \mathrm{H}, \mathrm{s}), 0.68(6 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 210.17,159.77,154.16,144.81,137.03,131.64$, 130.52, 125.95, 123.76, 121.62, 121.02, 112.47, 110.06, 69.41, 45.00, 43.99, 43.12, 30.24, 26.35, 17.21, 16.66, 8.51.
4.1.4.2. 5-(3-(4-(3,3-Dimethyl-2-oxobutoxy)-3-methylphenyl)pen-tan-3-yl)-1-ethyl-N-(3-(trifluoromethyl)phenyl)-1H-pyrrole-2carboxamide ($\mathbf{8 b}$). In the same method as $\mathbf{4 a}, \mathbf{8 b}$ was prepared from 3 and 3 -aminobenzotrifluoride. White oil, $0.40 \mathrm{~g}, 72 \%$ yield. HRMS, $\mathrm{ESI}^{+}, m / z$: calcd for $\mathrm{C}_{32} \mathrm{H}_{39} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{3}(\mathrm{M}+\mathrm{H})^{+} 557.2986$ found 557.2993. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 7.78(2 \mathrm{H}, \mathrm{s}), 7.42(1 \mathrm{H}, \mathrm{m})$, $7.32(1 \mathrm{H}, \mathrm{m}), 7.04(1 \mathrm{H}, \mathrm{s}), 7.01(1 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}), 6.70(1 \mathrm{H}, \mathrm{d}$, $J=1.8 \mathrm{~Hz}), 6.52(1 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}), 6.39(1 \mathrm{H}, \mathrm{d}, J=1.8 \mathrm{~Hz}), 4.88(2 \mathrm{H}$, s), $4.38(2 \mathrm{H}, \mathrm{q}, J=7.2 \mathrm{~Hz}), 2.26(3 \mathrm{H}, \mathrm{s}), 1.98(4 \mathrm{H}, \mathrm{q}, J=7.2 \mathrm{~Hz}), 1.45$ $(3 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}), 1.27(9 \mathrm{H}, \mathrm{s}), 0.68(6 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 210.17,159.74,154.17,140.48,138.92,131.73$, $130.52,129.36,126.04,123.64,122.82,116.52,112.63,110.07,69.42$, 45.01, 43.99, 30.24, 26.35, 17.20, 8.51.
4.1.4.3. 5-(3-(4-(3,3-Dimethyl-2-oxobutoxy)-3-methylphenyl)pen-tan-3-yl)-N-(4-ethoxyphenyl)-1-ethyl-1H-pyrrole-2carboxamide ($\mathbf{8 c}$). In the same method as $\mathbf{4 a}, \mathbf{8 c}$ was prepared from 3 and phenetidine. White oil, $0.48 \mathrm{~g}, 78 \%$ yield. $\mathrm{HRMS}, \mathrm{ESI}^{+}, \mathrm{m} / \mathrm{z}$: calcd for $\mathrm{C}_{33} \mathrm{H}_{44} \mathrm{~N}_{2} \mathrm{O}_{4}(\mathrm{M}+\mathrm{H})^{+} 533.3374$ found 533.3381. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 7.44(2 \mathrm{H}, \mathrm{m}), 7.05(1 \mathrm{H}, \mathrm{s}), 7.01(1 \mathrm{H}, \mathrm{d}$, $J=8.4 \mathrm{~Hz}), 6.88(2 \mathrm{H}, \mathrm{m}), 6.64(1 \mathrm{H}, \mathrm{d}, J=1.8 \mathrm{~Hz}), 6.53(1 \mathrm{H}, \mathrm{d}$, $J=8.4 \mathrm{~Hz}), 6.31(1 \mathrm{H}, \mathrm{d}, J=1.8 \mathrm{~Hz}), 4.87(2 \mathrm{H}, \mathrm{s}), 4.37(2 \mathrm{H}, \mathrm{q}$, $J=6.9 \mathrm{~Hz}), 4.02(2 \mathrm{H}, \mathrm{q}, J=7.2 \mathrm{~Hz}), 2.18(3 \mathrm{H}, \mathrm{s}), 1.96(4 \mathrm{H}, \mathrm{q}$, $J=7.2 \mathrm{~Hz}), 1.42(6 \mathrm{H}, \mathrm{m}), 1.27(9 \mathrm{H}, \mathrm{s}), 0.68(6 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 210.3,159.85,154.49,140.35,131.11,130.36$, 125.95, 125.31, 121.86, 114.80, 111.70, 110.18, 69.27, 63.70, 46.21, $44.99,36.47,30.28,26.01,17.26,14.83,11.60,8.54$.
4.1.4.4. 4-(Ethoxycarbonyl)phenyl 5-(3-(4-(3,3-dimethyl-2-oxobutoxy)-3-methylphenyl)pentan-3-yl)-1-ethyl-1H-pyrrole-2carboxylate ($\mathbf{8 d}$). In the same method as $\mathbf{4 a}, \mathbf{8 d}$ was prepared from 3 and 4-hydroxybenzoic acid ethyl ester. White oil, $0.44 \mathrm{~g}, 68 \%$ yield. HRMS, $\mathrm{ESI}^{+}, m / z$: calcd for $\mathrm{C}_{34} \mathrm{H}_{43} \mathrm{NO}_{6}(\mathrm{M}+\mathrm{H})^{+} 562.3163$ found 562.3176. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 8.02(1 \mathrm{H}, \mathrm{s}), 7.99(1 \mathrm{H}$,
s), $7.27(1 \mathrm{H}, \mathrm{m}), 7.10(1 \mathrm{H}, \mathrm{s}), 6.97(1 \mathrm{H}, \mathrm{s}), 6.93(1 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}), 6.86$ $(1 \mathrm{H}, \mathrm{d}, J=1.8 \mathrm{~Hz}), 6.63(1 \mathrm{H}, \mathrm{d}, J=1.8 \mathrm{~Hz}), 6.45(1 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz})$, $4.78(2 \mathrm{H}, \mathrm{s}), 4.29(4 \mathrm{H}, \mathrm{m}), 2.20(3 \mathrm{H}, \mathrm{s}), 1.90(4 \mathrm{H}, \mathrm{q}, J=5.4 \mathrm{~Hz}), 1.31$ $(6 \mathrm{H}, \mathrm{m}), 1.18(9 \mathrm{H}, \mathrm{s}), 0.58(6 \mathrm{H}, \mathrm{t}, J=5.4 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR (75 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta: 210.04,158.60,154.49,140.29,132.53,130.99,130.40$, $128.26,127.52,126.07,125.74,121.88,119.14,110.22,69.56,60.99$, 44.94, 44.14, 30.38, 26.37, 16.97, 14.33, 8.55.
4.1.4.5. 4-(2-Methoxy-2-oxoethyl)phenyl 5-(3-(4-(3,3-dimethyl-2-oxobutoxy)-3-methylphenyl)pentan-3-yl)-1-ethyl-1H-pyrrole-2carboxylate ($\mathbf{8 e}$). In the same method as $\mathbf{4 a}, \mathbf{8 e}$ was prepared from 3 and p-hydroxybenzoate ethyl ester. White oil, $0.44 \mathrm{~g}, 68 \%$ yield. HRMS, ESI ${ }^{+}, m / z$: calcd for $\mathrm{C}_{34} \mathrm{H}_{43} \mathrm{NO}_{6}(\mathrm{M}+\mathrm{H})^{+} 562.3163$ found $562.3173 .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 7.46(2 \mathrm{H}, \mathrm{m}), 7.28(2 \mathrm{H}, \mathrm{m})$, $7.19(1 \mathrm{H}, \mathrm{s}), 7.13(1 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}), 7.06(1 \mathrm{H}, \mathrm{d}, J=2.1 \mathrm{~Hz}), 6.81(1 \mathrm{H}$, $\mathrm{d}, J=2.1 \mathrm{~Hz}), 6.67(1 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}), 4.99(2 \mathrm{H}, \mathrm{s}), 4.44(2 \mathrm{H}, \mathrm{q}$, $J=7.2 \mathrm{~Hz}), 3.87(3 \mathrm{H}, \mathrm{s}), 3.76(2 \mathrm{H}, \mathrm{s}), 2.42(3 \mathrm{H}, \mathrm{s}), 2.11(4 \mathrm{H}, \mathrm{q}$, $J=7.2 \mathrm{~Hz}), 1.51(3 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}), 1.40(9 \mathrm{H}, \mathrm{s}), 0.82(6 \mathrm{H}, \mathrm{t}, J=7.1 \mathrm{~Hz})$. ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 210.33,173.54,154.18,140.38,132.33$, $130.42,127.87,126.06,122.10,118.80,110.28,69.62,52.05,44.13$, 40.63, 30.43, 26.36, 16.98, 8.56.
4.1.4.6. 1-Ethyl-5-(3-(4-(2-hydroxy-3,3-dimethylbutoxy)-3-methylphenyl)pentan-3-yl)-N-(4-(trifluoromethoxy)phenyl)-1H-pyr-role-2-carboxamide (9a). In the same method as 5 a , $\mathbf{9 a}$ was prepared from 8a. White oil, $0.14 \mathrm{~g}, 92 \%$ yield. $\mathrm{HRMS}, \mathrm{ESI}^{+}, \mathrm{m} / \mathrm{z}$: calcd for $\mathrm{C}_{32} \mathrm{H}_{41} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{4}(\mathrm{M}+\mathrm{H})^{+} 575.3091$ found 575.3096. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 7.72(2 \mathrm{H}, \mathrm{m}), 7.41(1 \mathrm{H}, \mathrm{m}), 7.32(1 \mathrm{H}, \mathrm{m}), 7.05$ $(1 \mathrm{H}, \mathrm{d}, J=8.1 \mathrm{~Hz}), 7.04(1 \mathrm{H}, \mathrm{s}), 6.75(1 \mathrm{H}, \mathrm{d}, J=8.1 \mathrm{~Hz}), 6.59(1 \mathrm{H}, \mathrm{d}$, $J=1.8 \mathrm{~Hz}), 6.40(1 \mathrm{H}, \mathrm{d}, J=1.8 \mathrm{~Hz}), 4.33(2 \mathrm{H}, \mathrm{q}, J=7.2 \mathrm{~Hz}), 4.12(1 \mathrm{H}$, $\mathrm{m}), 3.88(1 \mathrm{H}, \mathrm{m}), 3.71(1 \mathrm{H}, \mathrm{m}), 2.25(3 \mathrm{H}, \mathrm{s}), 1.99(4 \mathrm{H}, \mathrm{q}, J=7.2 \mathrm{~Hz})$, $1.42(3 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}), 1.02(9 \mathrm{H}, \mathrm{s}), 0.63(6 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 159.73,154.56,140.20,138.86,131.82,130.34$, 129.40, 126.14, 122.85, 120.17, 116.51, 112.51, 110.21, 69.29, 59.62, $45.00,44.01,33.59,30.42,26.06,17.06,14.44,8.52$.
4.1.4.7. 1-Ethyl-5-(3-(4-(2-hydroxy-3,3-dimethylbutoxy)-3-methylphenyl)pentan-3-yl)-N-(3-(trifluoromethyl)phenyl)-1H-pyr-role-2-carboxamide ($\mathbf{9 b}$). In the same method as $\mathbf{5 a}, \mathbf{9 b}$ was prepared from $\mathbf{8 b}$. White oil, $0.13 \mathrm{~g}, 88 \%$ yield. $\mathrm{HRMS}, \mathrm{ESI}^{+}, \mathrm{m} / \mathrm{z}$: calcd for $\mathrm{C}_{32} \mathrm{H}_{41} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{3}(\mathrm{M}+\mathrm{H})^{+} 559.3142$ found 559.3149. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 7.66(1 \mathrm{H}, \mathrm{s}), 7.56(1 \mathrm{H}, \mathrm{m}), 7.28(2 \mathrm{H}, \mathrm{m}), 7.07(1 \mathrm{H}$, $\mathrm{d}, J=8.4 \mathrm{~Hz}), 6.75(1 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}), 6.69(1 \mathrm{H}, \mathrm{d}, J=1.8 \mathrm{~Hz}), 6.40$ $(1 \mathrm{H}, \mathrm{d}, J=1.8 \mathrm{~Hz}), 4.37(2 \mathrm{H}, \mathrm{q}, J=7.2 \mathrm{~Hz}), 4.11(1 \mathrm{H}, \mathrm{m}), 3.88(1 \mathrm{H}, \mathrm{m})$, $3.73(1 \mathrm{H}, \mathrm{m}), 2.29(3 \mathrm{H}, \mathrm{s}), 1.97(4 \mathrm{H}, \mathrm{q}, J=7.2 \mathrm{~Hz}), 1.42(3 \mathrm{H}, \mathrm{t}$, $J=7.2 \mathrm{~Hz}), 1.02(9 \mathrm{H}, \mathrm{s}), 0.69(6 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR (75 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta: 159.76,154.57,144.88,140.23,131.74,130.34,125.94$, $123.78,112.56,110.21,59.62,45.00,44.01,33.60,30.43,26.06,17.06$, 14.43, 8.52.
4.1.4.8. N-(4-Ethoxyphenyl)-1-ethyl-5-(3-(4-(2-hydroxy-3,3-dimethylbutoxy)-3-methylphenyl)pentan-3-yl)-1H-pyrrole-2carboxamide ($\mathbf{9 c}$). In the same method as $\mathbf{5 a}, \mathbf{9 c}$ was prepared from 8c. White oil, $0.13 \mathrm{~g}, 87 \%$ yield. HRMS, ESI ${ }^{+}, \mathrm{m} / \mathrm{z}$: calcd for $\mathrm{C}_{33} \mathrm{H}_{46} \mathrm{~N}_{2} \mathrm{O}_{4}(\mathrm{M}+\mathrm{H})^{+} 535.3530$ found $535.3531 .{ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta: 7.41(2 \mathrm{H}, \mathrm{m}), 7.05(1 \mathrm{H}, \mathrm{d}, J=8.1 \mathrm{~Hz}), 7.03(1 \mathrm{H}, \mathrm{s}), 6.84(2 \mathrm{H}$, $\mathrm{m}), 6.73(1 \mathrm{H}, \mathrm{d}, J=8.1 \mathrm{~Hz}), 6.63(1 \mathrm{H}, \mathrm{d}, J=1.8 \mathrm{~Hz}), 6.30(1 \mathrm{H}, \mathrm{d}$, $J=1.8 \mathrm{~Hz}), 4.36(2 \mathrm{H}, \mathrm{q}, J=7.2 \mathrm{~Hz}), 4.23(1 \mathrm{H}, \mathrm{m}), 4.01(2 \mathrm{H}, \mathrm{q}$, $J=6.9 \mathrm{~Hz}), 3.86(1 \mathrm{H}, \mathrm{m}), 3.70(1 \mathrm{H}, \mathrm{m}), 2.21(3 \mathrm{H}, \mathrm{s}), 1.95(4 \mathrm{H}, \mathrm{q}$, $J=7.2 \mathrm{~Hz}), 1.38(6 \mathrm{H}, \mathrm{m}), 1.15(9 \mathrm{H}, \mathrm{s}), 0.67(6 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 159.85,154.49,140.34,131.42,130.36,125.95$, 124.27, 114.80, 111.70, 110.18, 69.27, 63.70, 57.53, 44.99, 43.87, 36.47, 33.58, 26.06, 17.26.14.83, 8.54.
4.1.4.9. 4-(Ethoxycarbonyl)phenyl 1-ethyl-5-(3-(4-(2-hydroxy-3,3-dimethylbutoxy)-3-methylphenyl)pentan-3-yl)-1H-pyrrole-2carboxylate (9d). In the same method as 5a, $\mathbf{9 d}$ was prepared from 8d. White oil, $0.12 \mathrm{~g}, 88 \%$ yield. HRMS, $\mathrm{ESI}^{+}, \mathrm{m} / \mathrm{z}$: calcd for $\mathrm{C}_{34} \mathrm{H}_{45} \mathrm{NO}_{6}(\mathrm{M}+\mathrm{H})^{+} 564.3321$ found $564.3325 .{ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta: 8.09(1 \mathrm{H}, \mathrm{m}), 7.18(2 \mathrm{H}, \mathrm{m}), 6.98(2 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}), 6.99(1 \mathrm{H}$, s), $6.87(1 \mathrm{H}, \mathrm{d}, J=1.8 \mathrm{~Hz}), 6.68(1 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}), 6.61(1 \mathrm{H}, \mathrm{d}$, $J=1.8 \mathrm{~Hz}), 4.26(4 \mathrm{H}, \mathrm{m}), 4.03(1 \mathrm{H}, \mathrm{m}), 3.81(1 \mathrm{H}, \mathrm{m}), 3.64(1 \mathrm{H}, \mathrm{m})$, $2.14(3 \mathrm{H}, \mathrm{s}), 1.90(4 \mathrm{H}, \mathrm{q}, J=7.5 \mathrm{~Hz}), 1.29(6 \mathrm{H}, \mathrm{m}), 1.18(9 \mathrm{H}, \mathrm{s}), 0.61(6 \mathrm{H}$, $\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}$). ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 172.31,158.61,154.51$, $139.97,132.59,130.99,130.26,128.19,127.53,125.88,121.87,119.12$, $110.21,69.25,61.00,44.94,44.16,35.58,30.38,26.07,16.97,14.34$, 8.55 .
4.1.4.10. 4-(2-Hydroxyethyl)phenyl 1-ethyl-5-(3-(4-(2-hydroxy-3,3-dimethylbutoxy)-3-methylphenyl)pentan-3-yl)-1H-pyrrole-2carboxylate ($\mathbf{9 e}$). In the same method as $\mathbf{5 a}, \mathbf{9 e}$ was prepared from 8e. White oil, $0.12 \mathrm{~g}, 86 \%$ yield. HRMS, ESI ${ }^{+}$, m / z : calcd for $\mathrm{C}_{33} \mathrm{H}_{45} \mathrm{NO}_{5}(\mathrm{M}+\mathrm{H})^{+} 536.3371$ found 536.3377. ${ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right)$): $7.30(2 \mathrm{H}, \mathrm{m}), 7.14(2 \mathrm{H}, \mathrm{m}), 7.11(1 \mathrm{H}, \mathrm{s}), 6.95(1 \mathrm{H}, \mathrm{m}), 6.78$ $(2 \mathrm{H}, \mathrm{m}), 6.71(1 \mathrm{H}, \mathrm{m}), 4.33(2 \mathrm{H}, \mathrm{q}, J=5.7 \mathrm{~Hz}), 4.13(1 \mathrm{H}, \mathrm{m}), 3.88(2 \mathrm{H}$, $\mathrm{m}), 3.83(1 \mathrm{H}, \mathrm{m}), 3.75(2 \mathrm{H}, \mathrm{m}), 3.64(1 \mathrm{H}, \mathrm{m}), 2.24(3 \mathrm{H}, \mathrm{s}), 1.97(4 \mathrm{H}, \mathrm{q}$, $J=6.9 \mathrm{~Hz}), 1.38(3 \mathrm{H}, \mathrm{t}, J=5.7 \mathrm{~Hz}), 1.03(9 \mathrm{H}, \mathrm{s}), 0.70(6 \mathrm{H}, \mathrm{t}, J=6.9 \mathrm{~Hz})$. ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 158.34,156.45,140.07,132.42,130.41$, $129.93,127.85,126.58,125.89,125.57,122.12,118.80,117.54,110.22$, $69.21,63.65,50.87,44.92,38.59,33.59,30.38,26.08,17.01,8.56$.
4.1.4.11. Pyridin-2-ylmethyl 5-(3-(4-(3,3-dimethyl-2-oxobutoxy)-3-methylphenyl)pentan-3-yl)-1-ethyl-1H-pyrrole-2-carboxylate (10a). In the same method as 4a, 10a was prepared from 3 and 2pyridinemethanol. White oil, $0.45 \mathrm{~g}, 77 \%$ yield. $\mathrm{HRMS}, \mathrm{ESI}^{+}, m / z$: calcd for $\mathrm{C}_{31} \mathrm{H}_{40} \mathrm{~N}_{2} \mathrm{O}_{4}(\mathrm{M}+\mathrm{Na})^{+} 527.2880$ found 527.2886 . ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 8.57(1 \mathrm{H}, \mathrm{m}), 7.70(1 \mathrm{H}, \mathrm{m}) .7 .37(1 \mathrm{H}, \mathrm{m}), 7.22$ $(1 \mathrm{H}, \mathrm{m}), 5.53(2 \mathrm{H}, \mathrm{s}), 4.86(2 \mathrm{H}, \mathrm{s}), 4.29(2 \mathrm{H}, \mathrm{q}, J=7.2 \mathrm{~Hz}), 2.29(3 \mathrm{H}, \mathrm{s})$, $1.93(4 \mathrm{H}, \mathrm{q}, J=7.2 \mathrm{~Hz}), 1.35(3 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}), 1.24(9 \mathrm{H}, \mathrm{s}), 0.65(6 \mathrm{H}, \mathrm{t}$, $J=7.2 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 210.03,160.32,154.11$, $149.24,136.78,130.44,127.08,125.77,122.62,121.61,117.93,110.23$, 69.63, 65.93, 43.97, 30.44, 26.35, 17.03, 8.54.
4.1.4.12. 4-Fluorobenzyl 5-(3-(4-(3,3-dimethyl-2-oxobutoxy)-3-methylphenyl)pentan-3-yl)-1-ethyl-1H-pyrrole-2-carboxylate (10b). In the same method as $\mathbf{4 a}, \mathbf{1 0 b}$ was prepared from 3 and 4 fluorobenzyl alcohol. White oil, $0.44 \mathrm{~g}, 73 \%$ yield. $\mathrm{HRMS}, \mathrm{ESI}^{+}, \mathrm{m} /$ z : calcd for $\mathrm{C}_{32} \mathrm{H}_{40} \mathrm{FNO}_{4}(\mathrm{M}+\mathrm{Na})^{+} 544.2834$ found $544.2824 .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 7.33(1 \mathrm{H}, \mathrm{m}), 7.16(2 \mathrm{H}, \mathrm{m}), 7.01(3 \mathrm{H}, \mathrm{m})$, $6.76(1 \mathrm{H}, \mathrm{d}, J=2.1 \mathrm{~Hz}), 6.60(1 \mathrm{H}, \mathrm{d}, J=2.1 \mathrm{~Hz}), 6.52(1 \mathrm{H}, \mathrm{d}$, $J=8.4 \mathrm{~Hz}), 5.23(2 \mathrm{H}, \mathrm{s}), 4.84(2 \mathrm{H}, \mathrm{s}), 4.31(2 \mathrm{H}, \mathrm{q}, J=7.2 \mathrm{~Hz}), 2.17(3 \mathrm{H}$, s), $1.93(2 \mathrm{H}, \mathrm{q}, J=7.5 \mathrm{~Hz}), 1.25(9 \mathrm{H}, \mathrm{s}), 0.65(6 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz}){ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 210.03,160.37,154.13,140.47,131.94$, 130.07, 127.06, 125.77, 123.44, 117.85, 114.97, 110.22, 69.63, 64.45, 44.93, 43.97, 30.45, 26.35, 17.03, 16.66, 8.54.
4.1.4.13. Pyridin-2-ylmethyl 1-ethyl-5-(3-(4-(2-hydroxy-3,3-dimethylbutoxy)-3-methylphenyl)pentan-3-yl)-1H-pyrrole-2carboxylate (11a). In the same method as 5a, 11a was prepared from 10a. White oil, $0.14 \mathrm{~g}, 94 \%$ yield. $\mathrm{HRMS}, \mathrm{ESI}^{+}, \mathrm{m} / \mathrm{z}$: calcd for $\mathrm{C}_{31} \mathrm{H}_{42} \mathrm{~N}_{2} \mathrm{O}_{4}(\mathrm{M}+\mathrm{H})^{+} 507.3217$ found $507.3205 .{ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right)$): $8.51(1 \mathrm{H}, \mathrm{m}), 7.63(1 \mathrm{H}, \mathrm{m}), 7.34(1 \mathrm{H}, \mathrm{m}), 7.14(1 \mathrm{H}, \mathrm{m}), 6.96$ $(1 \mathrm{H}, \mathrm{d}, J=7.8 \mathrm{~Hz}), 6.95(1 \mathrm{H}, \mathrm{s}), 6.63(2 \mathrm{H}, \mathrm{s}), 6.54(1 \mathrm{H}, \mathrm{d}, J=1.8 \mathrm{~Hz})$, $5.28(2 \mathrm{H}, \mathrm{s}), 4.23(2 \mathrm{H}, \mathrm{q}, J=7.2 \mathrm{~Hz}), 4.03(1 \mathrm{H}, \mathrm{m}), 3.79(1 \mathrm{H}, \mathrm{m}), 3.62$ $(1 \mathrm{H}, \mathrm{m}), 2.13(3 \mathrm{H}, \mathrm{s}), 1.88(2 \mathrm{H}, \mathrm{q}, J=7.2 \mathrm{~Hz}), 1.29(3 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz})$, $0.94(9 \mathrm{H}, \mathrm{s}), 0.59(6 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ : $160.47,154.45,149.27,140.15,136.74,131.95,130.29,127.03,126.51$, $125.89,122.62,121.62,117.38,110.22,69.28,65.95,50.78,44.93$, 43.98, 33.58, 30.44, 26.06, 17.04, 8.54.
4.1.4.14. 4-Fluorobenzyl 1-ethyl-5-(3-(4-(2-hydroxy-3,3-dimethylbutoxy)-3-methylphenyl)pentan-3-yl)-1H-pyrrole-2carboxylate (11b). In the same method as 5a, 11b was prepared from 10b. White oil, $0.14 \mathrm{~g}, 92 \%$ yield. HRMS, $\mathrm{ESI}^{+}, m / z$: calcd for $\mathrm{C}_{32} \mathrm{H}_{42} \mathrm{FNO}_{4}(\mathrm{M}+\mathrm{H})^{+} 526.3171$ found $526.3162 .{ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta: 7.32(1 \mathrm{H}, \mathrm{m}), 7.15(1 \mathrm{H}, \mathrm{m}), 7.02(3 \mathrm{H}, \mathrm{m}), 6.72(2 \mathrm{H}, \mathrm{m}), 6.60$ $(1 \mathrm{H}, \mathrm{d}, J=2.1 \mathrm{~Hz}), 5.22(2 \mathrm{H}, \mathrm{s}), 4.29(2 \mathrm{H}, \mathrm{q}, J=7.2 \mathrm{~Hz}), 4.10(1 \mathrm{H}, \mathrm{m})$, $3.87(1 \mathrm{H}, \mathrm{m}), 3.73(1 \mathrm{H}, \mathrm{m}), 2.20(3 \mathrm{H}, \mathrm{s}), 1.95(4 \mathrm{H}, \mathrm{q}, J=7.5 \mathrm{~Hz}), 1.36$ $(3 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}), 1.02(9 \mathrm{H}, \mathrm{s}), 0.67(6 \mathrm{H}, \mathrm{t}, J=7.6 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 161.8,154.44,140.14,131.98,130.07,127.02$, $125.90,125.49,123.44,117.83,117.49,114.97,110.19,69.25,64.46$, 50.80, 43.99, 33.57, 30.43, 26.06, 17.04, 8.54.

4.2. Biological experiment and methods

4.2.1. In vitro VDR binding ability assay

PolarScreen VDR Competitor Assay Red was provided by Life Technologies. The test compounds and calcitriol were dissolved in DMSO and diluted with NR Buffer with 1% DMSO to different concentrations. Varying amounts of tested compounds were incubated for 4 h at room temperature in the presence of 1 nM Fluormone ${ }^{\text {TM }}$ VDR Red and 0.7 nM VDR. The fluorescence polarization value (mP) of each well was measured on a fluorescence polarization plate reader. The compound IC_{50} values were calculated using GraphPad Prism 5.0.

4.2.2. Differetiation induction of HL-60 cells assay

The human promyelocytic leukemia cell line (HL-60) was provided by Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences. HL-60 cells were cultured in RPMI-1640 medium supplemented with 10% fetal bovine serum (FBS), and Penicillin $100 \mathrm{U} / \mathrm{mL}$ and Streptomycin $100 \mathrm{U} / \mathrm{mL}$ were added. Cell cultures were maintained in a humidified atmosphere of $5 \% \mathrm{CO}_{2}$ at $37{ }^{\circ} \mathrm{C}$. The cell concentration at seeding was adjusted to 1×10^{4} cells $/ \mathrm{mL}$ in 96 -well plates in a volume of $100 \mu \mathrm{~L}$ per well. The test compounds and positive control were dissolved in DMSO and diluted with culture medium to different concentrations (the final concentration of DMSO was 0.1%). $20 \mu \mathrm{~L}$ of the test compound solution was added in duplicates, and incubation continued for 96 h in a humidified atmosphere of $5 \% \mathrm{CO}_{2}$ at $37^{\circ} \mathrm{C}$. After incubation, The HL-60 cells were collected by centrifugation, washed with phosphate-buffered saline (PBS), and re-suspended in the medium. To the cell suspension was added NBT (Sigma) and 12-O-tetrade-canoylphorbol- 13-acetate (TPA, Sigma). Final concentrations of NBT and TPA were 0.1% and $100 \mathrm{ng} / \mathrm{mL}$, respectively. The mixture was incubated at $37{ }^{\circ} \mathrm{C}$ for 3 h , and cells were collected by centrifugation and re-suspended in PBS. Smear was prepared and Wright stain. The ratio of NBT-positive cells was counted under a microscope. The compound EC_{50} values were calculated using GraphPad Prism 5.0.

4.2.3. In vitro anti-proliferation activity assay

Human prostate cancer cell line (PC-3), human breast cancer cell line (MCF-7), human colorectal adenocarcinoma cell (Caco-2), Human hepatoma cell line (HepG-2) and human liver cell line (LO2) were provided by Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences. PC-3 cell was cultured in DMEM/F-12 medium supplemented with 10% FBS, and Penicillin $100 \mathrm{U} / \mathrm{mL}$ and Streptomycin $100 \mathrm{U} / \mathrm{mL}$ were added. Cell cultures were maintained in a humidified atmosphere of $5 \% \mathrm{CO}_{2}$ at $37{ }^{\circ} \mathrm{C}$. Cells were seeded at respective density (1×10^{5} cells $/ \mathrm{ml}$) in 96 -well plates in a volume of $200 \mu \mathrm{~L}$ per well. After seeding 24 h , the medium was removed. The test compounds were dissolved in DMSO and diluted with culture medium to different concentrations (the final concentration of DMSO was 0.1%). $200 \mu \mathrm{~L}$ of the test compound
solution was added in duplicates, and incubation continued for 48 h in a humidified atmosphere of $5 \% \mathrm{CO}_{2}$ at $37^{\circ} \mathrm{C}$. Remove the medium, and cells were fixed with Methylthiazolyldiphenyl-tetrazolium bromide (MTT) $20 \mu \mathrm{~L}$. The mixture was incubated at $37{ }^{\circ} \mathrm{C}$ for 4.0 h . Remove the medium carefully. $150 \mu \mathrm{~L}$ of DMSO was added to each well, and the absorbance was measured at 570 nm using a microplate reader. The compound IC_{50} values were calculated using GraphPad Prism 5.0. Anti-proliferation activity assay of MCF-7 cell, Caco-2 cell, HepG-2 cell and L02 cell were the same as PC-3 cell except culture condition.

4.2.4. In vivo calcemic activity assay

ICR mice ($18-22 \mathrm{~g}$) were obtained from the Shanghai Silaike Laboratory Animal Ltd., were housed on standard laboratory diet at an ambient temperature and humidity in air-conditioned chambers and were used for the present studies. All the animals were pathogen free and allowed to access food and water freely. All animal experiments were conducted in full compliance with local, national, ethical and regulatory principles with the approval of the Institutional Animal Care and Use Committee at China Pharmaceutical University. Six week old ICR mice were weighed and randomly divided into three groups including control group, positive group and test group respectively. All the mice were fed with a vitamin D-replete diet (0.2% calcium, 1% phosphate, and 2000 units vitamin) for a week. The hypercalcemic effect of the analogues was tested by daily subcutaneous injections of serial dilutions of $1.25(\mathrm{OH})_{2} \mathrm{D}_{3}$ or analogues for 7 consecutive days. All compounds dissolved in the mixed solution of ethanol/propanediol (1:4). And the control group was given mixed solution $100 \mu \mathrm{~L} /$ day, the positive group was given Calcitriol ($0.5 \mu \mathrm{~g} / \mathrm{kg} /$ day $)$, sw-22 and LG190155 ($30 \mathrm{mg} / \mathrm{kg} /$ day each), the test group was given compounds $\mathbf{5 i}$, and $\mathbf{5 k}(0.5 \mathrm{mg} / \mathrm{kg} /$ day, $10 \mathrm{mg} / \mathrm{kg} /$ day and $30 \mathrm{mg} / \mathrm{kg} /$ day, respectively). Serum calcium were measured as calcemic parameters using a calcium assay kit (Nanjing Jiangcheng Bioengineering institute).

Acknowledgments

This work was supported by the National Natural Science Foundation of China (81273468,81473153), National Basic Research Program of China (2015CB755500), and 111 Project from the Ministry of Education of China and the State Administration of Foreign Expert Affairs of China (No. 111-2-07). We greatly appreciated Professor Yisheng Lai and Ms. Jianhu Xiao at China Pharmaceutical University for docking study.

References

[1] Q.M. Song, I.N. Sergeev, High vitamin D and calcium intakes increase bone mineral (Ca and P) content in high-fat diet-induced obese mice, Nutr. Res. 35 (2015) 146-154.
[2] L.L. Ooi, Y. Zheng, H. Zhou, Vitamin D deficiency promotes growth of MCF-7 human breast cancer in a rodent model of osteosclerotic bone metastasis, Bone 47 (2010) 795-803.
[3] M.R. Haussler, G.K. Whitfield, I. Kaneko, C.A. Hasussler, D. Hsieh, J.C. Hsieh, P.W. Jurutka, Molecular mechanisms of vitamin D action, Calcif. Tissue Int. 92 (2013) 77-98.
[4] S. Yamada, M. Shimizu, K. Yamamoto, Relationships of vitamin D including ligand recognition by the vitamin D receptor, Med. Res. Rev. 23 (2003) 89-115.
[5] R. Bouillon, G. Eelen, L. Verlinden, C. Mathieu, G. Carmeliet, A. Verstuyf, Vitamin D and cancer, J. Steroid Biochem. 102 (2006) 156-162.
[6] J.C. Fleet, Molecular actions of vitamin D contributing to cancer prevention, Mol. Asp. Med. 29 (2008) 388-396.
[7] M.F. Holick, Vitamin D: its role in cancer prevention and treatment, Prog. Biophys. Mol. Biol. 92 (2006) 49-59.
[8] D. Feldman, A.V. Krishnan, S. Swami, E. Giovannucci, B.J. Feldman, The role of vitamin D in reducing cancer risk and progression, Nat. Rev. Cancer 14 (2014) 342-357.
[9] Y. Anami, T. Itoh, D. Egawa, N. Yoshimoto, K. Yamamoto, A mixed population of antagonist and agonist binding conformers in a single crystal explains
partial agonism against vitamin D receptor: active vitamin D analogues with 22R-Alkyl group, J. Med. Chem. 57 (2014) 4351-4367.
[10] H. Maehr, N. Rochel, H.J. Hong, N. Suh, M.R. Uskokovic, Diastereotopic and deuterium effects in Gemini, J. Med. Chem. 56 (2013) 3878-3888.
[11] M.F. Boehm, P. Fitzgerald, A. Zou, M.G. Elgort, E.D. Bischoff, L. Mere, D.E. Mais, R.P. Bissonnette, R.A. Heyman, A.M. Nadzan, M. Reichman, E.A. Allegretto, Novel nonsecosteroidal vitamin D mimics exert VDR-modulating activities with less calcium mobilization than 1,25-dihydroxyvitamin D_{3}, Chem. Biol. 6 (1999) 265-275.
[12] H. Kashiwagi, Y. Ono, M. Ohta, S. Itoh, F. Ichikawa, S. Harada, S. Takeda, N. Sekiquchi, M. Ishiqaim, T. Takahashi, A series of nonsecosteroidal vitamin D receptor agonists for osteoporosis therapy, Bioorg. Med. Chem. 21 (2013) 1823-1833.
[13] S. Yamada, M. Makishima, Structure-activity relationship of nonsecosteroidal vitamin D receptor modulators, Trends Pharmacol. Sci. 35 (2014) 324-337.
[14] L.A. Plum, H.F. Deluca, Vitamin D, disease and therapeutic opportunities, Nat. Rev. Drug Discov. 9 (2010) 941-955.
[15] E.S. Yang, K.L. Burnstein, Vitamin D inhibits G_{1} to S progression in LNCaP prostate cancer cells through p27 ${ }^{\mathrm{Kip} 1}$ stabilization and Cdk2 mislocalization to the cytoplasm, J. Biol. Chem. 278 (2003) 46862-46868.
[16] K.K. Deeb, D.L. Trump, C.S. Johnson, Vitamin D signalling pathways in cancer:
potential for anticancer therapeutics, Nat. Rev. Cancer 7 (2007) 684-700.
[17] W. Shen, J.W. Xue, Z.K. zhao, C. Zhang, Novel nonsecosteroidal VDR agonists with phenyl-pyrrolyl pentane skeleton, Eur. J. Med. Chem. 69 (2013) 768-778.
[18] F. Ciesielski, Y. Sato, Y. Chebaro, D. Moras, A. Dejacegere, N. Rochel, Structural basis for the accommodation of bis- and tris-aromatic serivatives in vitamin D nuclear receptor, J. Med. Chem. 55 (2012) 8440-8449.
[19] S. Hosoda, A. Tanatani, K.I. Wakabayashi, Y. Nakano, H. Miyachi, K. Nagasawa, Y. Hashimoto, Ligands with dual vitamin D_{3}-agonistic and androgenantagonistic activities, Bioorg. Med. Chem. Lett. 15 (2005) 4327-4331.
[20] E. Thomas, J.D. Brion, J.F. Peyrat, Synthesis and preliminary biological evaluation of new antiproliferative aromatic analogues of $1 \alpha, 25$-dihydroxyvitamin D3, Eur. J. Med. Chem. 36 (2014) 381-393.
[21] L. Verlinden, A. Verstuyf, M. Van Camp, S. Marcelis, K. Sabbe, X.Y. Zhao, P. De Clercq, M. Vandewalle, R. Bouillon, Two novel 14-Epi-analogues of 1,25dihydroxyvitamin D3 inhibit the growth of human breast cancer cells in vitro and in vivo, Cancer Res. 60 (2000) 2673-2679.
[22] S. Kakuda, K. Okada, H. Eguchi, K. Takemouchi, W. Hakamata, M. Kurihara, M.T. Kamimura, Structure of the ligand-binding domain of rat VDR in complex with the nonsecosteroidal vitamin D_{3} analogue YR301, Acta Cryst. 64 (2008) 970-973.

[^0]: * Corresponding author.
 ** Corresponding author.
 E-mail addresses: xuelingjing65@163.com (L. Xue), zhangcan@cpu.edu.cn (C. Zhang).

