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Endoplasmic reticulum stress mediating
downregulated StAR and 3-beta-HSD and low
plasma testosterone caused by hypoxia is
attenuated by CPU86017-RS and nifedipine
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Abstract

Background: Hypoxia exposure initiates low serum testosterone levels that could be attributed to downregulated
androgen biosynthesizing genes such as StAR (steroidogenic acute regulatory protein) and 3-beta-HSD (3-beta-
hydroxysteroid dehydrogenase) in the testis. It was hypothesized that these abnormalities in the testis by hypoxia
are associated with oxidative stress and an increase in chaperones of endoplasmic reticulum stress (ER stress) and
ER stress could be modulated by a reduction in calcium influx. Therefore, we verify that if an application of
CPU86017-RS (simplified as RS, a derivative to berberine) could alleviate the ER stress and depressed gene
expressions of StAR and 3-beta-HSD, and low plasma testosterone in hypoxic rats, these were compared with
those of nifedipine.

Methods: Adult male Sprague-Dawley rats were randomly divided into control, hypoxia for 28 days, and hypoxia
treated (mg/kg, p.o.) during the last 14 days with nifedipine (Nif, 10) and three doses of RS (20, 40, 80), and normal
rats treated with RS isomer (80). Serum testosterone (T) and luteinizing hormone (LH) were measured. The
testicular expressions of biomarkers including StAR, 3-beta-HSD, immunoglobulin heavy chain binding protein (Bip),
double-strand RNA-activated protein kinase-like ER kinase (PERK) and pro-apoptotic transcription factor C/EBP
homologous protein (CHOP) were measured.

Results: In hypoxic rats, serum testosterone levels decreased and mRNA and protein expressions of the testosterone
biosynthesis related genes, StAR and 3-beta-HSD were downregulated. These changes were linked to an increase in
oxidants and upregulated ER stress chaperones: Bip, PERK, CHOP and distorted histological structure of the seminiferous
tubules in the testis. These abnormalities were attenuated significantly by CPU86017-RS and nifedipine.

Conclusion: Downregulated StAR and 3-beta-HSD significantly contribute to low testosterone in hypoxic rats and
is associated with ER stress which mediates testis damage caused by oxygen deprivation. CPU86017-RS is potential
in ameliorating hypoxia-induced testicular injuries, possibly by its calcium antagonist effects on the testis.
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Background
Male hypogonadism is defined as low serum testosterone
under 300 ng/dL that has been considered as one of the
major concerns in the modern society [1]. Regarding the
possible mechanisms underlying, oxidative stress in the

testis serves as the main causal factor actively involved in
the pathogenesis of male hypogonadism [2]. Among var-
ious etiologies, hypoxia causes oxygen deprivation in the
testis contributing to reduced production of androgen, in
which a combination with pro-inflammatory factors
including ET-1 (endothelin -1), leptin and ROS in initiat-
ing testicular abnormalities is likely involved [3]. Oxygen
deprivation induces a series of mitochondria dysfunction
facilitating an increase of oxidants and a decrease of
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antioxidants, resulting in an alteration of the redox sys-
tem, then, oxidative stress occurs [4,5]. In the oxygen
deprived condition, an increase in transcription promot-
ing factors exacerbates the production of inflammatory
and pro-inflammatory cytokines likely caused by hypoxia.
Therefore, a low level of inflammation exists in the testis
affecting adversely expressions of the androgen produc-
tion genes such as StAR and 3-beta-HSD. The low
inflammatory situation is always characterized by increas-
ing chaperones of endoplasmic reticulum stress (ER
stress). Endoplasmic reticulum (ER), a membrane-
enclosed reticular network, is the site for the maturation
of newly synthesized proteins requiring appropriate fold-
ing process through various spatial configurations [6].
Hypoxia causes an excess of oxidants including both
ROS (reactive oxygen species) and RNS (reactive nitrogen
species) interfering with the process of unfolded protein
response (UPR) [7]. At the beginning, UPR is favorable
for cell-protecting activity possibly leading to a relief to
ER stress. Along with the further development of ER
stress, the signals such as IRE1 (inositol-requiring
enzyme-1), PERK (double-strand RNA-activated protein
kinase-like ER kinase), ATF6 (activating transcription
factor-6) and CHOP (C/EBP homologous protein) are
exaggerated, then, the dialogue between the endoplasmic
reticulum and the nucleus is altered, triggering the sig-
naling cascades to induce adverse events in cells, finally
resulting in apoptosis, cell death and disease [8].
Stress, stimulated by oxygen deprivation, adversely

affects the testis by reducing sperm genesis, histological
changes associated with low testosterone production
[9,10]. In our previous reports hypoxic pulmonary hyper-
tension (HPH) where oxidative stress develops is subse-
quent to an activation of the ET-ROS pathway [11,12].
Downregulation of FKBP12.6 and SERCA2a at the endo-
plasmic reticulum (ER) in cardiac myocytes is associated
with an upregulated endothelin (ET) system facilitating
ROS genesis [13,14]. Exaggerated production of ROS
causes telomere shortened, spermatogenesis decreased
and testosterone biosynthesis reduced, these abnormal-
ities are likely to happen in aging [15]. Disturbance of ER
function regarding calcium homeostasis induces abnor-
mal protein folding process through ER stress and the
UPR [16]. Eventually, ER stress facilitates the appearance
of apoptosis through activating calcium homeostasis and
exaggerated ROS production, accounting for cell dys-
function, insults and death [17]. However, it is unclear if
hypoxia induced downregulated StAR and 3-beta-HSD
and low testosterone in plasma are due to an involve-
ment of ER stress in the hypoxia testis and these abnorm-
alities could be blunted by interventions with calcium
antagonism.
CPU86017, a derivative of berberine, has been reported

to have calcium antagonism, a-adrenoceptor blocking

effects and antioxidative activities [18]. CPU86017 is a
racemate, containing two chiral centers: 7N and 13aC,
and the 4 isomers are active in suppressing L-type chan-
nels similar to those of the racemate. Among them, the
activity of RS isomer is most favorable in treating hypoxic
pulmonary hypertension [19].
We hypothesized that ER stress might be actively impli-

cated in the hypoxic testicular injuries likely mediated by
an increase in calcium influx which is augmented on
hypoxia [20]. Thus, a blockade on the calcium influx by
nifedipine and CPU86017-RS might be beneficial in nor-
malizing StAR, 3-beta-HSD, low testosterone, and the ER
stress due to oxygen deprivation. This study was aimed to
verify whether ER stress is responsible for low expression
of StAR and 3-beta-HSD, and low testosterone involved in
hypoxia-damaged testes and could be blunted by
CPU86017-RS, compared to those of nifedipine.

Materials and methods
Materials
CPU86017-RS (RS), was synthesized by the Center of
New Drug Discovery, China Pharmaceutical University
and nifedipine (Nif) was purchased from Kangpu Drug
Manufacturer, Changzhou, China. The MMLV RT
(Moloney Murine Leukemia Virus Reverse Transcriptase;
Promega, Madison, WI) and Taq DNA polymerase
(Tiangen Biotech, Beijing, China) were purchased from
Tianwei Company, Nanjing, China. Monoclonal mouse
anti-StAR-IgG, anti-CHOP-IgG, polyclonal rabbit anti-
PERK-IgG and anti-Bip-IgG were purchased from Santa
Cruz Biotechnology (Santa Cruz, CA); polyclonal rabbit
anti-3-beta-HSD-IgG from Novus Biotechnology;
HRP-conjugated polyclonal goat anti-mouse IgG and
polyclonal goat anti-rabbit IgG from Boster Biological
Technology, Wuhan, China

Animals
Adult male Sprague-Dawley rats, weighing 200-220 g,
were obtained from The Zhejiang Experimental Animal
Center in Hangzhou, Zhejiang Province, with a license
No. SCXK20080033. The treatment of rats was strictly
conformed to the Guideline of Handling Experimental
Animals set up by the Science-Technology Bureau of
Jiangsu Province, China.

Hypoxia and Treatment
Rats were randomly divided into seven groups (n = 10):
control, hypoxia for 28 days, and hypoxia treated (mg/kg,
p.o.) during the last 14 days with Nif (10) and 3 doses of
RS isomer (20, 40, 80), and normal rats treated with RS
isomer (80). Hypoxia exposure was conducted according
to the previous studies with some modifications [11,19].
Briefly, rats were housed in a normobaric chamber 8 h
per day, and inside O2 concentration at 10 ± 0.5%
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controlled by driving in N2 with an instant monitoring
system. The hypoxia condition is equivalent to 6 000 m
highland. Rats were under hypoxia sustained for 4 weeks.
Sufficient amount of soda lime and anhydrous calcium
chloride was placed inside to absorb unnecessary CO2

and moisture. Rats in control and untreated groups were
received an equal volume of 0.5% carboxy-methyl-cellu-
lose Na (CMC-Na).

Histological evaluation
The testicular tissue was fixed with 10% neutral formalin,
embedded in paraffin, and sliced into 5-mm-thick pieces
that were stained with routine hematoxylin-eosin (H-E)
staining. The examination of all slices was conducted
under light microscopy by a pathologist blinded to the
experimental profile, and pictures were taken at ×200
amplification [21].

Biochemical assays
Serum testosterone (T) and luteinizing hormone (LH)
were conducted by applying chemiluminescence assay as
in previous reports [21]. The contents of malondialdehyde
(MDA) and activities of glutathione peroxidase (GSH-px)
and lactate dehydrogenase (LDH) were assayed following
instructions of the kits provided by the Nanjing Jiancheng
Bio-engineering Institute (China).

Reverse transcription PCR
The mRNA abundance of StAR, 3-beta-HSD, Bip, PERK
and CHOP was measured by RT-PCR according to the
previous reports [19]. Briefly, total RNA extraction from
testicular tissue by Trizol reagent was reversely transcribed
into cDNA using MMLV RT according to the manufac-
turer’s introduction. RT-PCR was performed in a volume
of 25 uL with a 1-μg aliquot of cDNA, and the products
were stained with ethidium bromide and detected under
an ultraviolet lamp (GDS8000; Sygene, Cambridge, UK).

The densitometry of each band was analyzed using profes-
sional image analysis software, and the ratio of the target
gene against the GAPDH internal standard was calculated.
The nucleotide sequences of primers and PCR amplifica-
tion conditions are listed in Table 1.

Western blot analysis
To conduct quantitative analysis of protein levels of
StAR, 3-beta-HSD, Bip, PERK and CHOP, a portion of
testicular tissue (100 mg) was homogenized in four
volumes of extraction buffer and then centrifuged at
10,000×g at 4°C (for 10 min. After the protein concentra-
tions were determined, the supernatant was stored at
-20°C before use. Aliquots of samples were heated to
98°C in a loading buffer and fractionated on 10% sodium
dodecyl sulfate polyacrylamide gel electrophoresis (SDS-
PAGE). Following the transfer to a nitrocellulose mem-
brane and blocking with nonfat milk (5%, w/v), the blot
was incubated at 4°C overnight with specific primary
antibody. Three washes later, the blot incubated with
horseradish peroxidase (HRP)-conjugated goat secondary
antibody IgG (Affinity Bioreagents; 1:1000) for 1 h at
room temperature was detected with a DAB kit. The
bands was visualized by an imaging acquisition (Lab-
works, UK) and quantified by densitometry. The relative
abundance was obtained by normalizing the density of
the tested proteins against that of b-actin [22].

Statistical analysis
All data were analyzed with SPSS 11.5 (USA) and pre-
sented as the means ± SD. Statistical evaluation was
conducted by one-way ANOVA. Then Bonferroni multi-
ple comparison tests were applied to check the signifi-
cance of differences; in checking the variances of two
independent samples an Independent-Sample t-test was
used. A probability value of P < 0.05 was considered to
be statistically significant.

Table 1 Sequence of primers and conditions used for RT-PCR amplification

Primers Sequence of primers PCR amplification conditions

StAR Sense:5’-CTCAACAACCAAGGAAGGCTGG-3’ 94°C, 60 s; 56°C, 40 s;

Atisense:5’-GCAGGTGGGGCCGTGTTCAGC-3’ 72°C, 40 s; 30 cycles

3-beta-HSD Sense:5’-ACTGGCAAATTCTCCATAGCC-3’ 94°C, 30 s; 60°C, 45 s;

Atisense:5’-GCTGAACAGTCGACCCTCCTT-3’ 72°C, 60 s; 30 cycles

CHOP Sense:5’-TCTGCCTTTCGCCTTTGAG-3’ 94°C, 40 s; 55°C, 60 s;

Atisense:5’-GCTTTGGGAGGTGCTTGTG-3’ 72°C, 40 s; 29 cycles

Bip Sense:5’-CATCAATGAGCCAACAGC-3’ 94°C, 45 s; 60°C, 60 s;

Atisense: 5’-AGGTAGAGCGGAACAGG-3’ 72°C, 45 s; 26 cycles

PERK Sense: 5’-GCCGATGGGATAGTGATG-3’ 94°C, 45 s; 62°C, 60 s;

Atisense: 5’-GCAGCCTCTACAATGTCTTCT-3’ 72°C, 45 s; 28 cycles

GAPDH Sense:5’-GCTGGGGCTCACCTGAAGG-3’ 94°C, 45 s; 56°C, 60 s;

Atisense:5’-GGATGACCTTGCCCACAGCC-3’ 72°C, 60 s; 30 cycles
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Results
Testosterone and LH
Serum testosterone in the hypoxia group was decreased
dramatically by 73.9% (P < 0.01) relative to control. To
detect changes in the hypothalamus-pituitary-testis axis
(HPT axis), an elevated serum LH was found, up to 596%
(P < 0.01) compared to control. An increase of LH was
due to the decreased inhibitory activity of serum testos-
terone on the HPT axis via the negative feedback
mechanism. An elevated serum testosterone was
responded dose-dependently to CPU86017-RS and Nif in
association with a recovery of serum LH (Figure 1).

MDA, GSH-px and LDH
After exposure to hypoxia for 4 weeks, production of
MDA was increased by 79.4% and 65.8% in serum and
the testis (P < 0.01), relative to normal, respectively. In
contrast, a reduction in the activities of serum GSH-px
by 37.9% and LDH in testis by 41.1% (P < 0.01) was
found, compared to normal (Figure 2). The results indi-
cated that the rat was suffering from oxidative insults
leading to an increment in lipid peroxidation and
reduced antioxidant activity both in serum and the tes-
tis, and a deficiency of energy supply in the testis was
indicative of decreased activity of testicular LDH
responsible for the decreased production of androgen
and spermatogenesis in the seminiferous tubules.

CPU86017-RS and Nif eliminated these changes signifi-
cantly as compared with the hypoxia alone.

Histological changes
In the normal testis with H+E staining, the multilayered
epithelial cells were arranged and packed orderly in the
seminiferous tubules, and the reproductive epithelium
tightly linked to the basement membrane of the tubules.
The lumen of tubules was rich in spermatozoa and the
interstitial cells were present in the gap between the
tubules. Contorted structures were found in the hypoxia
group by showing distorted and decreased layers of
reproductive germ cells and far fewer spermatozoa leav-
ing a large cavity at the center of lumen. The skeleton
of multilayered epithelial cells and extracellular matrix
was seriously disturbed in the tubules. Leydig cells dis-
appeared at the gaps among the tubules. These changes
were in agreement with low testosterone in serum. The
histological abnormalities of the testis were greatly atte-
nuated by interventions with CPU86017-RS in a dose
related manner and Nif, respectively (Figure 3).

StAR and 3-beta-HSD
Responded to hypoxia, expressions of genes of StAR and
3-beta-HSD, engaging in the biosynthesis of testoster-
one, were downregulated in the abundance of mRNA by
40.7% (P < 0.01) and 38.8% (P < 0.01), respectively

Figure 1 Serum testosterone and LH levels. A reduction in testosterone and an elevated LH in serum were found in rats explored to
intermittent hypoxia for 4 weeks, and these changes were relieved by medication (mg/kg, po) with CPU86017-RS (20, 40, 80, termed as RSL,
RSM, RSH) and Nif (10) in the last 2 weeks. A, Testosterone, and B, LH. Mean ± SD, n = 10. *P < 0.05, **P < 0.01, vs. Normal; #P < 0.05, # #P < 0.01,
vs. Hypoxia, $P < 0.05, vs. H+RSL (hypoxia + RS low dose).
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(Figure 4, A and 4C). Constantly, a reduction in protein
abundance of StAR and 3-beta-HSD was evident by
Western blot; down to 44.8% (P < 0.01) and 41.1% (P <
0.01), relative to normal (Figure 4, B and 4D). In
response to interventions these changes were attenuated
markedly (P < 0.01) following application of 3 doses of
CPU86017-RS and Nif as compared with the hypoxia
group.

Bip, PERK and CHOP
It was interesting to verify if the hypoxic sufferings in
the testis were characterized by an entity of inflamma-
tory, thus, we tested the chaperones responsible for
developing endoplasmic reticulum stress. An increase in
mRNA expression of Bip, PERK and CHOP was signifi-
cant (P < 0.01) in the hypoxic testes, relative to normal.
Protein abundances were upregulated significantly

Figure 2 MDA, GSH-px and LDH assay. Production of MDA in serum and the testis was augmented and activities of GSH-px and testicular
LDH were reduced by hypoxia exposure for 4 weeks in rats. These changes were attenuated by medicated (mg/kg, po) with CPU86017-RS (20,
40 and 80) and nif (10) in the last two weeks; A, Serum MDA; B. Testicular MDA; C, Serum GSH-px; D, Testicular LDH. Mean ± SD, n = 10. *P <
0.05, **P < 0.01, vs. Normal; #P < 0.05, # #P < 0.01, vs. Hypoxia, $P < 0.05, vs. H+RSL (hypoxia + RS low dose).
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revealing the occurrence of ER stress which represented
a status of chronic inflammation in the hypoxic testes.
Following interventions, these abnormalities were greatly
relieved, in agreement with the aforementioned findings.
(Figure 5).

Discussion
In the present study, the testis damaged by intermittent
hypoxia in rats is characterized by low testosterone and
high LH in serum, associated with histological changes in
the testis. Under oxygen deprivation, an increase in ROS
and RNS has been found as contributing factors for tissue
damage [5]. Emerging data indicates that ROS serves as
the requisite effector and signaling regulator in facilitat-
ing hypoxic Ca2+ release [23]. Both calcium and ROS are
regarded as the key messengers in the dialogue between
ER and mitochondria. Ca2+ overload and excess ROS
genesis may synergistically contribute to dysfunction of
mitochondria and ER stress and eventually cell damage
and death. As we demonstrated in the present study, an
application of nifedipine, a calcium antagonist, is suffi-
cient to blunt insults in the testis caused by intermittent
hypoxia. It is coincided with the findings that calcium
antagonists diltiazem and nifedipine are beneficial to low
temperature-induced pulmonary hypertension associated
with pulmonary vascular remodeling [24], and it is also
true, as demonstrated in the present study, in relieving
insults in the hypoxic testis.
In response to low serum testosterone, male hypogonad-

ism can be divided into two categories: hypogonadotrophic,
with a reduced FSH and LH against low testosterone, as
presented in patients with diabetes, obesity, relevant to

metabolic syndrome [25]. In contrast, a low serum testos-
terone is frequently involved in some acute events as
responded to stress, exerting less suppression on the
hypothalamus-pituitary connection, as a consequence, high
levels of FSH and LH occur, referred as hypergonado-
trophic hypogonadism. The latter is found in the present
study on exposure to hypoxia, in line with those we
reported previously in isoproterenol-induced testopathy
[3].
The response to intermittent oxygen deprivation mani-

fests an entity of stress and a low level of inflammation.
These changes may be linked with an increase of ROS
which stimulates an increase in calcium influx to facilitate
overloaded Ca2+ in the cytosol. In the hypoxic pathologies
in the testis, an increase in calcium influx is critical, thus,
by a blockade on calcium influx, the decreased biosynth-
esis of testosterone in the testis and the response of the
hypothalamus were blunted back to the normal levels. We
suggested that Ca2+ overload injury may be caused by
intermittent hypoxia in the testis which was associated
with chronic inflammation, and these reactions were likely
found in aging, characterized as progressively increase in
ROS and degenerative changes in the testes [15].
StAR is a rate-limiting factor in testosterone biosynth-

esis, by transporting cholesterol from outer membrane of
mitochondria to its inner side [26]. In Leydig cells, StAR
expression is mainly regulated by LH-mediated activation
of cAMP-dependent pathways leading to transcriptional
activation ultimately [27]. It is reported that testicular
damage is always presented with a reduced StAR gene
expression in literatures [28,29] and in our previous
report [21]. The biosynthesis of androgen is completed in

Figure 3 The morphology changes in the testis. Alterations in testis histopathology were significant following 4 weeks exposure to hypoxia
and were relieved by medication with CPU86017-RS and nifedipine in the last two weeks (200×) in rats. A, Control; B, Hypoxia; C, H+Nif; D, H
+RSL; E, H+RSM; F, H+RSH; G, N+RSH.
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Figure 4 StAR and 3-beta-HSD expression. Downregulation of mRNA or protein expression of StAR and 3-beta-HSD was significant in rat
testis suffering from hypoxia exposure for 4 weeks and was relieved by CPU86017-RS and Nif, medicated in the last 2 weeks. A, StAR mRNA; B,
StAR protein; C, 3-beta-HSD mRNA; D, 3-beta-HSD protein. Mean ± SD, n = 10. *P < 0.05, **P < 0.01, vs. Normal; #P < 0.05, # #P < 0.01, vs.
Hypoxia, $P < 0.05, vs. H+RSL (RS low dose).
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Figure 5 The expressions of ER stress chaperones. Upregulation of mRNA and protein expression of Bip, PERK and CHOP were caused by
hypoxia in the testes and were attenuated by CPU86017-RS and Nif. A, Bip mRNA; B, Bip protein; C, PERK mRNA; D, PERK protein; E, CHOP
mRNA; F, CHOP protein. Mean ± SD, n = 10. *P < 0.05, **P < 0.01, vs. Normal; #P < 0.05, # #P < 0.01, vs. Hypoxia, $P < 0.05, vs. H+RSL (hypoxia +
RS low dose).
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serial reactions, in which 3-beta-HSD catalyzes the con-
version of dehydroepiandrosterone to androstenedione in
mitochondria, thereafter, the process of biosynthesis of
testosterone is continued while moving into the ER in
Leydig cells. The two enzymes presented a state of down-
regulation strongly indicating poor testosterone produc-
tion in Leydig cells, eventually leading to a great decline
in serum testosterone following hypoxia exposure [30].
ER stress has been expanded dramatically in explaining

the entity of disease as low levels of inflammatory status
in many diseases, and oxidative stress, calcium signaling
and inflammatory factors have been recognized as the
key messengers for inducing ER stress [16]. Regarding
triggered factors in tissues, elevated pro-inflammatory
cytokines, an excess of endothelin-1, hyperglycemia,
hypercholesterolemia and disturbance of Ca2+ homeosta-
sis are active in initiating ER stress. The UPR defined as a
defensive response in its initial stage of ER stress, leading
to a reduction in the ER workload by translational
attenuation, then, the maladaptive response in the ER
can be overcome. However, while risk factors, such as an
excess of ROS genesis are persistent due to prolonged
oxygen deprivation, more calcium influx into the cyto-
plasm can be seen in hypoxic pulmonary hypertension
[11]. This situation could be reproduced in the hypoxic
testis. In fact, in the present study, upregulation of Bip,
identical to the 78 kDa glucose regulated protein
(GRP78), serves as a central regulator of ER stress and
indicates its dissociation from the binding sites of the fol-
lowing chaperones ATF6, PERK and IRE1. Some studies
using solid tumors showed that hypoxia induces Bip
expression via activated ER stress to improve protein
aggravation [31]. As demonstrated in the present study, a
normal expression rather than an upregulated expression
of Bip is essential in keeping the testis free from hypoxic
insults.
PERK, a type I transmembrane kinase, can be activated

by auto-phosphorylation and auto- dimerization following
dissociation with Bip [32]. Activated PERK may rescue the
cells from ER overload by phosphorylating eukaryotic
initiation factor 2a (eIF2a) at Ser 51, which inhibits
mRNA translation in the nucleus. Cell protection in the
hypoxic testes could be achieved by upregulation of PERK
through reducing translation contributing to reduction of
critical regulatory proteins which promotes activation of
transcription factors such as NF�-B under cellular stress
[33]. Important consequence of PERK- eIF2a pathway
could take place in the testis damaged by hypoxia expo-
sure, the same as those showed in diabetic nephropathy
which is characterized by upregulation of PERK in renal
tissue [34].
ER stress, a double-edged sword, is beneficial at first,

and appears to be harmful while upregulation of CHOP/
GADD153 occurs. CHOP conducts the transition from

the protective phase to the death-promoting phase of the
UPR under intermittent hypoxia. Death executor CHOP
induces apoptosis by promoting protein synthesis and
oxidation in the stressed ER [35]. Many pathologies in
the hypoxic testis are aggravated via CHOP-induced
apoptosis. Our results indicate that significantly upregu-
lated CHOP in the testis on chronic hypoxic exposure
represents a severe damage to the testicular tissue due to
ER stress. An increase in CHOP chaperone facilitates the
appearance of apoptosis and testicular cell dysfunction
possibly by suppressing Bcl-2 through JNK/CHOP/DR5
signaling [36], and stimulating Bim (BH3-only protein)
via protein phosphatase 2A-mediated dephosphorylation
and CHOP-C/EBPa-mediated transcriptional induction
[37] and an enhancement of PUMA promoter through
ATF4-CHOP pathway [38]. CHOP associated with severe
testis damage was suppressed by CPU87017-RS and Nif.
The alteration of Bip, PERK and CHOP confirms that

ER stress mediates the pathogenesis of testopathy under
hypoxic exposure. Interestingly, inhibition of the Ca2+

influx by nifedipine is significant in this regards, indicating
the importance of blockade on Ca2+ channels in attenuat-
ing ER stress in the hypoxic testis. Therefore, an alleviation
of ER stress by CPU86017-RS is probably relevant to its
calcium influx blocking activity in the hypoxic testis.

Limitations
As we revealed in the present study, the restricting of cal-
cium influx is crucial in attenuating the testicular lesions
by intermittent hypoxia. CPU86017-RS suppresses the cal-
cium channels significantly [11,18]. We believe that
CPU86017-RS and nifedipine exert beneficial effects rele-
vant to the calcium antagonist activity in the testis, there-
after; a reduction in oxidative stress is the consequence by
suppressing NADPH oxidase in the testis. However, direct
suppression on NADPH oxidase and ROS genesis in
Leydig cells by calcium influx restricting effects of
CPU86017-RS and Nif are not offered in the present
study. Downregulation of androgen biosynthesizing genes
associated with exacerbated chaperones of ER stress in the
Leydig cells is presumably modulated by calcium influx,
which is needed for further exploration in the testicular
dysfunction suffering from hypoxia.

Conclusion
Upregulation of Bip, PERK and CHOP is the major event
in hypoxia testes in rats, contributing to low expression
of StAR and 3-beta-HSD responsible for compromised
testosterone biosynthesis. These changes are likely the
consequence to an activation of an increased calcium
influx in the testicular cells under oxygen deprivation.
CPU86017-RS is potential for use in relieving hypoxia-
induced testicular dysfunction through alleviating ER
stress via its calcium antagonism. A restriction of calcium
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influx which modulates ER stress and the StAR and 3-
beta-HSD gene expression is worth to explore further in
Leydig cells.
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